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Abstract: Hodgkin-Huxley (HH) neuronal model has been widely accepted neuronal model in neuroscience. The variation of the ionic 

currents in neuron cell causes the variations in the membrane potential. The level of membrane potential indicates the activation and 

inactivation dynamics. In this paper, in order to observe the unmeasurable states and parameters of HH neuron accurately, Runge-Kutta 

discretization based nonlinear observer is designed. In numerical simulations, the membrane potential is measured and the ionic currents 

are estimated. The numerical results provide accurate estimation results that can be used both in monitoring and control of neuron 

dynamics. 
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1. Introduction  

 

Mathematical model of a biological system presents an 

understanding for the behavior of the system. Recently, 

mathematical models of the bacteria populations, diseases, 

microbiological organisms and nerve cells have increasing 

applications for biology, medicine, biomedical, neuroscience 

fields. In this work, we have interested on Hodgkin-Huxley 

neuronal model. In general, nervous systems have very complex 

structures with largely interconnected neuron cells. These 

neurons carry out the computational and communication tasks 

with electrical potentials. The charge ionic distribution of the 

neuron cell generates of the electrical potential on the membrane 

potential. When a membrane has enough action potential, then 

firing threshold can be reached then there exist spikes on the 

membrane voltage [1]. The communication with neighbouring 

neurons or the information patterns stored on the neurons are 

occurred based on this membrane potential such that the control 

of the membrane potential by ionic currents is an important 

subject of the neuroscience and biomedical engineering. 

 

In neuroscience, Hodgkin-Huxley (HH) model is a first 

introduced model of the neuron cell [2].  The mathematical model 

of the HH model explaining the relations between membrane 

potential and ion channels is experimentally constructed using the 

electrical behavior of the giant axon in squad. In fact, it is a five 

state model that are the membrane potential and four ion channel 

currents modelled as an electrical circuit. Based on the HH 

model, there are developed electrical circuits to realize its 

behavior and stimulate under different conditions. At the same 

time, in order to produce practical and implementable neuron 

model, different neuron models are developed based on the HH 

model such as namely FitzHugh Nagumo model (FHN), Morris-

Lecar model, Hindmarsh-Rose model and etc. [1]. In order to 

analyse the behaviour of neuron models, some of models are 

realized using electronic components [3]-[5] 

 

Nonlinear observers have been used for considerably amount of 

applications in the subject of such as state estimation, parameter 

estimation, fault detection and isolation, disturbance estimation, 

unknown input estimation and other applications. Therefore, in 

literature, various types of the nonlinear observers can be found 

for a specific application. As a leading work on state observers 

have been first published for linear systems [6], and then 

extended for nonlinear systems [7]. With the requirements on the 

state estimation, there have introduced several nonlinear 

observers such as extended-Luenberger observer [8], extended-

Kalman filter [9], sliding-mode observer [10], [11], high-gain 

observer [12], Takagi-Sugeno fuzzy observers [13], Runge-Kutta 

observer [14]-[16] etc. The nonlinear observers mentioned above 

are based on the mathematical model of the nonlinear system.  

 

In this study, some of nonlinear observers are chosen to estimate 

the states of HH neuronal model. For the HH neuronal model, the 

membrane potential is assumed to be measurable but the currents 

or auxiliary variables are assumed to unmeasurable. The aim is to 

estimate the unmeasurable states of the HH neuron model for an 

observer based future work such as in neuroscience medicine; 

there exist some mental diseases to treat using external stimulus 

of the nerve cells. The designed observers are selected purposely 

such that extended Kalman filter (EKF), sliding-mode observer 

(SMO), and discretization based gradient observer (DBGO). The 

chosen and designed nonlinear observers are applied to estimate 

the states of the HH neuron model then estimation results are 

plotted and root-mean squared errors (RMSE) are given in Table. 

As a general result, state estimation results are accurately 

obtained for the HH neuronal model of future applications in 

neuroscience, biomedical engineering and medicine. 

 

This paper is organized as follows: In Section 2, nonlinear 

observers, which are designed here, are explained in detail. 

Section 3 presents the Hodgkin-Huxley neuron model with 

mathematical dynamics. The Section 4 illustrates the state 

estimation results of the HH neuronal model using designed 

nonlinear observers. The discussions about the design conditions 

and application results of the observers are given in Section 5. 

2. Nonlinear Observers 

Consider a n𝑡ℎ order continuous-time nonlinear multi-input 
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multi-output (MIMO) system: 

�̇�  =  𝐟(𝐱, 𝐮)

𝐲 =  𝐠(𝐱, 𝐮)

𝑥1(𝑡) ∈ 𝑋1, … , 𝑥𝑁(𝑡) ∈ 𝑋𝑁,    ∀𝑡 ≥ 0

𝑢1(𝑡) ∈ 𝑈1, … , 𝑢𝑅(𝑡) ∈ 𝑈𝑅,    ∀𝑡 ≥ 0

 
                                                                                                                      
(1) 

where 𝐱(𝑡) ∈ X ⊂ ℜN is the state vector, 𝐮(𝑡) ∈ U ⊂ ℜR is the 

vector of measured control inputs and 𝐲(𝑡) ∈ ℜ𝑄 is the vector of 

outputs measurements. Nonlinear dynamics are subject to state 

and input constraints written as  
 

𝑋𝑖 = {𝑥𝑖 ∈ ℜ | 𝑥𝑖𝑚𝑖𝑛
≤ 𝑥𝑖 ≤ 𝑥𝑖𝑚𝑎𝑥 },

𝑈𝑖 = {𝑢𝑖 ∈ ℜ | 𝑢𝑖𝑚𝑖𝑛
≤ 𝑢𝑖 ≤ 𝑢𝑖𝑚𝑎𝑥 }.

 
                                                                                                                          
(2) 

It is assumed that the functions 𝐟𝑖(. ) and 𝐠𝑗(. ) [𝑖 =  1, … , 𝑁, 𝑗 =

 1, … , 𝑄] are known and continuously differentiable with respect 

to the control inputs and the state variables and  also the state 

variables are not available for measurement. The problem is to 

get the estimates �̂�(𝑡) of the unmeasured states of the system                               

(1) by using only the available input and output measurements.  

The nonlinear system is given in Eq.                               (1) is 

discretized to get samples from the time instants.  The Runge-

Kutta (RK) discretization method is adopted for obtaining 

discretized models of the continuous-time nonlinear system. The 

states and the output values of the system which belong to the 

next sampling time as in compact form can be predicted as 

�̂�[𝑛 + 1] = 𝐟(�̂�[𝑛], 𝐮[𝑛]) = �̂�[𝑛] + 𝐤[𝑛] 

�̂�[𝑛] = 𝐠(�̂�[𝑛], 𝐮[𝑛])
 

                                                                                                                        
(3) 

where 

𝒌[𝑛] =
1

6
[

𝑘11 + 2𝑘12 + 2𝑘13 + 𝑘14

𝑘21 + 2𝑘22 + 2𝑘23 + 𝑘24

⋮
𝑘𝑁1 + 2𝑘𝑁2 + 2𝑘𝑁3 + 𝑘𝑁4

] 

           =
1

6
(𝐤𝟏 + 2𝐤𝟐 + 2𝐤𝟑 + 𝐤𝟒) 

                                                                                                                        
(4) 

𝑘𝑖𝑗  variables with 𝑖 = 1, … ,4 and 𝑗 = 1, … , 𝑁 are explicitly 

defined as 

𝐤𝟏 = 𝑇𝑠𝐟(�̂�, 𝐮)

𝐤𝟐 = 𝑇𝑠𝐟(�̂� + 𝟎. 𝟓𝐤𝟏, 𝐮)

𝐤𝟑 = 𝑇𝑠𝐟(�̂� + 𝟎. 𝟓𝐤𝟐, 𝐮)

𝐤𝟒 = 𝑇𝑠𝐟(�̂� + 𝐤𝟑, 𝐮)

 
                                                                                                                        
(5) 

where it is called as the discretized model of the continuous-time 

system. For a Lipschitz nonlinear system the stability of RK 

discretization is shown using sufficiently small step size [17]. 

2.1. Extended Kalman Filter 

The EKF uses a recursive algorithm consisting of two parts 

namely prediction and measurement correction [9]. Consider the 

following state-space model of a discretized nonlinear dynamic 

system of (1) the states of which are to be estimated, 

𝐱[𝑛 + 1]  =  𝐟(𝐱[𝑛], 𝐮[𝑛]) + 𝐰[𝑛]

𝐲[𝑛 + 1]  =  𝐠(𝐱[𝑛], 𝐮[𝑛]) + 𝐯[𝑛]

𝐰 ~ 𝒩(0, 𝐐)

𝐯 ~ 𝒩(0, 𝐑)

 
                                                                                                                        
(6) 

where 𝐱[𝑛] is a N-dimensional state vector, 𝐮[𝑛]  ∈  ℜR is the 

vector of input signals and 𝐲[𝑛]  ∈  ℜ𝑄  is the vector of output 

signals. In (6), 𝐟(. ) is the discrete model of the nonlinear system. 

The random variables 𝐰 and 𝐯 represent the process and 

measurement noises, respectively, which are assumed to have 

independent and normal probability distributions with zero mean. 

Moreover, they have uncorrelated 𝐐 and 𝐑 noise covariance 

matrices. In the measurement correction stage a posteriori state 

estimates �̂�[𝑛] and the a posteriori error 𝐏[𝑛] are calculated using 

current measurements and the observer model. Thus, error 

covariance of the estimator is minimized. Time update equations 

for prediction stage are as follows, 

�̂�−[𝑛]  =  𝐟(�̂�−[𝑛 − 1], 𝐮[𝑛 − 1]),

𝐏−[𝑛]  =  𝐀[𝑛]𝐏[𝑛 − 1]𝐀𝑻[𝑛] + 𝐐.
 

                                                                                                                        
(7) 

Similarly, measurement update equations related to correction 

stage are, 

𝜰[𝑛]  =  𝐏−[𝑛]𝐇𝐓[𝑛](𝐇[𝑛]𝐏−[𝑛]𝐇𝐓[𝑛] + 𝐑),−1

�̂�[𝑛]  =  �̂�−[𝑛] + 𝚼[𝑛](𝐲[𝑛] − 𝐠(�̂�−[𝑛], 𝐮[𝑛 − 1])),

𝐏[𝑛]  =  (𝐈 − 𝚼[𝑛]𝐇[𝑛])𝐏−[𝑛],

 
                                                                                                                        
(8) 

where �̂�[𝑛] is state estimation vector, 𝚼[𝑛] and 𝐏[𝑛] matrices are 

Kalman gain and error covariance matrices, respectively. It is 

assumed that the functions 𝐟(. ) and 𝐠(. ) are differentiable with 

respect to 𝐱 and 𝐮 parameters where 𝐀[𝑛] and 𝐇[𝑛] matrices are 

the Jacobian matrices as 

𝐀[𝑛]  =  
∂𝐟

∂𝐱
|

𝐱 = �̂�[n − 1]

𝐮 = 𝐮[n − 1]

, 𝐇[𝑛]  =  
∂𝐠

∂𝐱
|

𝐱 = �̂�[n − 1]

𝐮 = 𝐮[n − 1]

                                                                                                                         
(9) 

These matrices, which are updated at every sampling time, are 

used recursively in prediction and correction update equations of 

the EKF.  

2.2. Sliding Mode Observer 

The sliding-mode observers are known for robustness to 

uncertainties and finite-time convergence properties [10], [11].  

SMOs construct a sliding-motion of output estimation error 

between the measured system output and observer output. There 

are some applications of the SMOs for state and parameter 

estimation of nonlinear systems [18], [19]. One of the states is 

measured and the estimated states are corrected using 

measurement error in a switching function and multiplying by a 

feedback constant. For the state estimation of nonlinear system                               

(1), classical sliding-mode observer is designed as follows.  

�̇̂�1[𝑛] = −ℎ1𝐞𝐦[𝑛] + �̂�2 − 𝑑1sign(𝐞𝐦[𝑛]),

�̇̂�2[𝑛] = −ℎ2𝐞𝐦[𝑛] + �̂�3 − 𝑑2sign(𝐞𝐦[𝑛]),

⋮
�̇̂�𝑁[𝑛] = −ℎ𝑁𝐞𝐦[𝑛] + 𝑓 − 𝑑𝑁sign(𝐞𝐦[𝑛]),

 
                                                                                                                        

(10) 

where 𝐞𝐦[𝑛] = �̂�𝐦[𝑛] − 𝐱𝐦[𝑛] is the measurement error and 

𝐱𝐦 (𝑚 = 1, … , 𝑁) is the single available measurement. The 

function 𝐟(𝐱[𝑛], 𝐮[𝑛]) is an approximation of 𝐟(𝐱[𝑛], 𝐮[𝑛]). The 

constants ℎ𝑖’s are chosen to ensure the asymptotical decay of the 

estimation error and the constants 𝑑𝑖’s are the design parameters 

for switching of the sliding surface. Then, the estimation error 

dynamics of 𝑁th-order are given by the following equation:  

�̇̂�1 = −ℎ1𝐞𝐦[𝑛] + 𝑒2 − 𝑑1sign(𝐞𝐦[𝑛]),

�̇̂�2 = −ℎ2𝐞𝐦[𝑛] + 𝑒3 − 𝑑2sign(𝐞𝐦[𝑛]),

⋮
�̇̂�𝑁 = −ℎ𝑁𝐞𝐦[𝑛] + 𝛥𝑓 − 𝑑𝑁sign(𝐞𝐦[𝑛]),

 
                                                                                                                        

(11) 

𝛥𝐟 = 𝐟 − 𝐟 is assumed to be bounded as 𝑘𝑁 ≥ |𝛥𝐟|. The 

asymptotic convergence and stability conditions are given [10], 

[11]. 

2.3. Discretization Based Gradient Observer 

The discretization based gradient observer (DBGO) has the same 

structure as given in (3). The nonlinear functions 𝐟 and 𝐠 are 

approximated using estimated states. When the gradient observer 

approximates accurately the real values, then states converges 

correctly to real states. However, the estimated states is achieved 
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using current output measurement error in gradient-descent 

method as  

�̂�[𝑛 + 1] = �̂�[𝑛] −
𝜕𝐄[𝑛 + 1]

𝜕�̂�[𝑛]
,

�̂�[𝑛 + 1] = 𝐠(�̂�[𝑛 + 1], 𝐮[𝑛]),

 
                                                                                                                        

(12) 

 where �̂�[𝑛] is the state estimate, �̂�[n] is the output estimate. 

Quadratic cost function of estimation is defined as 𝐄[𝑛] =
1

2
𝐞[𝑛]2. When the output estimation error is defined as 𝐞[𝑛] =

𝐲[𝑛] − �̂�[n], the gradient of the cost function with respect to state 

estimate is  

∂𝐄[𝑛 + 1]

∂�̂�[𝑛]
=

∂𝐄[𝑛 + 1]

∂�̂�[𝑛 + 1]

∂�̂�[𝑛 + 1]

∂�̂�[𝑛]
,

= −𝐞[𝑛 + 1]
∂𝐠[𝑛 + 1]

∂�̂�[𝑛 + 1]

∂�̂�[𝑛 + 1]

∂�̂�[𝑛]
.

 
                                                                                                                        

(13) 

  
∂�̂�[𝑛+1]

∂�̂�[𝑛]
 term, which plays a crucial role in the DBGO structure, 

is obtained by using the discretized model. Derivative 

components of the jacobian matrix can be extracted using time 

update of the RK based discretized model. Thus, the merit of the 

gradient observer has been exploited in the exact jacobian 

calculation. The jacobian matrix of the output is followed as  

𝐉[𝑛] = [∑  

𝑁

𝑖=1

∂𝐠[𝑛 + 1]

∂�̂�𝐢[𝑛 + 1]

∂�̂�𝐢[𝑛 + 1]

∂�̂�𝐣[𝑛]
]

𝐱=�̂�[𝑛]

 
                                                                                                                        

(14) 

where  

∂�̂�𝐢[𝑛 + 1]

∂�̂�𝐣[𝑛]
=

∂�̂�𝐢(𝑛)

∂�̂�𝐣[𝑛]
+

1

6

∂𝐤𝟏[𝑛]

∂�̂�𝐣[𝑛]
+

1

3

∂𝐤𝟐[𝑛]

∂�̂�𝐣[𝑛]
+

1

3

∂𝐤𝟑[𝑛]

∂�̂�𝐣[𝑛]
+

1

6

∂𝐤𝟒[𝑛]

∂�̂�𝐣[𝑛]  
                                                                                                                        

(15) 

and partial derivative components required in Eq. (15) are 

obtained as,   

𝜕𝐤𝟏[𝑛]

𝜕�̂�𝐣[𝑛]
= 𝑇𝑠 [∑  

𝑁

𝑘=1

𝜕𝑓𝑖

𝜕𝐱𝐣

𝜕𝐤𝟏[𝑛]

𝜕�̂�𝐣[𝑛]
]

𝐱=𝐱[𝑛]

𝜕𝐤𝟐[𝑛]

𝜕�̂�𝐣[𝑛]
= 𝑇𝑠 [

1

2
∑  

𝑁

𝑘=1

𝜕𝑓𝑖

𝜕𝐱𝐣

𝜕𝐤𝟐[𝑛]

𝜕�̂�𝐣[𝑛]
]

𝐱=𝐱[𝑛]+
1
2

𝐤𝟏[𝑛]

𝜕𝐤𝟑[𝑛]

𝜕�̂�𝐣[𝑛]
= 𝑇𝑠 [

1

2
∑  

𝑁

𝑘=1

𝜕𝑓𝑖

𝜕𝐱𝐣

𝜕𝐤𝟑[𝑛]

𝜕�̂�𝐣[𝑛]
]

𝐱=𝐱[𝑛]+
1
2

𝐤𝟐[𝑛]

𝜕𝐤𝟒[𝑛]

𝜕�̂�𝐣[𝑛]
= 𝑇𝑠 [∑  

𝑁

𝑘=1

𝜕𝑓𝑖

𝜕𝐱𝐣

𝜕𝐤𝟒[𝑛]

𝜕�̂�𝐣[𝑛]
]

𝐱=𝐱[𝑛]+𝐤𝟑[𝑛]

 
                                                                                                                        

(16) 

Using the jacobian matrix of the states and Levenberg-Marquadt 

direction, the DBGO state updates are performed as  

�̂�[𝑛 + 1] = �̂�[𝑛] + (𝐉𝐓[𝑛]𝐉[𝑛] + 𝜇𝐈)−1𝐉𝐓[𝑛]𝐞[𝑛],

�̂�(𝑛 + 1) = 𝐠(�̂�[𝑛 + 1], 𝐮[𝑛]),
 

                                                                                                                        

(17) 

where 𝐈 is 𝑁 × 𝑁 identity matrix, and change of the states is 

  

Δ�̂�[𝑛] = (𝐉𝐓[𝑛]𝐉[𝑛] + 𝜇𝐈)−1𝐉𝐓[𝑛]𝐞[𝑛].
 

                                                                                                                           

(18) 

For bounded input case of the nonlinear DBGO, convergence was 

proved in [15].  

3. Hodgkin-Huxley Neuronal Model 

The Hodgkin-Huxley (HH) model is a mathematical model that 

describes how action potentials in neurons are initiated and 

propagated [2]. HH model defines the electro-physiological 

behavior of a neuron. The interoperability of neuron’s is 

important for memory, calculation, motion control and diseases 

such as epilepsy. Also, synchronized activity and temporal 

correlation are fundamental tools for encoding and exchanging 

information for neuronal information processing in the brain [2]. 

It is a set of nonlinear ordinary differential equations that 

approximates the electrical characteristics of excitable cells. The 

basic single HH neuron is described by a Markov model as a set 

of nonlinear ODEs: 

𝐶�̇� = −𝑔𝑁𝑎𝑚3ℎ(𝑉 − 𝑉𝑁𝑎) − 𝑔𝐾𝑛4(𝑉 − 𝑉𝑘) − 𝑔𝐿(𝑉 − 𝑉𝐿),

�̇� = 𝛼𝑚(𝑉)(1 − 𝑚) − 𝛽𝑚(𝑉)𝑚,

ℎ̇ = 𝛼ℎ(𝑉)(1 − ℎ) − 𝛽ℎ(𝑉)ℎ,

�̇� = 𝛼𝑛(𝑉)(1 − 𝑛) − 𝛽𝑛(𝑉)𝑛,

 
                                                                                                                        

(19) 

 

where 𝐶 is the membrane capacitance and 𝑉 is the membrane 

potential. 𝑚, ℎ, 𝑛 are the gating variables. They represent the 

activation of the sodium flow current, the inactivation of the 

sodium flow current and activation of the potassium flow current, 

respectively. The spikes are generated with very low current 

levels. The explicit form of the functions 𝛼𝑚(𝑉), 𝛼ℎ(𝑉), 𝛼𝑛(𝑉),
𝛽𝑚(𝑉), 𝛽ℎ(𝑉) and 𝛽𝑛(𝑉), which describes the transition rates 

between open and closed states of the channels in Eq. (19), are 

given below: 

𝛼𝑚(𝑉) = 0.1 (𝑉 + 40) (1 − 𝑒𝑥𝑝(− (𝑉 + 40) 10⁄ ))⁄ ,

𝛽𝑚(𝑉) = 4𝑒𝑥𝑝(− (𝑉 + 65) 18⁄ ),

𝛼ℎ(𝑉) = 0.07𝑒𝑥𝑝(− (𝑉 + 65) 20⁄ ),

𝛽ℎ(𝑉) = 1 (1 + 𝑒𝑥𝑝(− (𝑉 + 35) 10⁄ ))⁄ ,

𝛼𝑛(𝑉)  = 0.01 (𝑉 + 55) (1 − 𝑒𝑥𝑝(− (𝑉 + 55) 10⁄ ))⁄ ,

𝛽𝑛(𝑉) = 0.125𝑒𝑥𝑝(− (𝑉 + 65) 80⁄ ),

 
                                                                                                                        

(20) 

The gating variables are described the probability for appropriate 

gate to be open. Therefore, these variables take values between 0 

and 1, where 0 means that the gate is closed, and 1 means that the 

gate is open. The parameters of the single neuron based on the 

HH model are given in Table 1.. 

Table 1. Model variables and parameters 

Symbol Units Description 

𝑪 1𝜇𝐹/𝑐𝑚2 Membrane capacitance 

𝒈𝑵𝒂 120𝑚𝑆/𝑚2 Maximal conductance of sodium current 

𝒈𝑲 36𝑚𝑆/𝑚2 Maximal conductance of potassium current 

𝒈𝑳 0.3𝑚𝑆/𝑚2 Conductance of leak current 

𝑽𝑵𝒂 50𝑚𝑉 Reversal potential of sodium current 

𝑽𝑲 −77𝑚𝑉 Reversal potential of potassium current 

𝑽𝑳 −54𝑚𝑉 Reversal potential of leak current 

 
An example of chaotic dynamics of the HH neuronal model is 

shown in Fig. 1 for initial conditions 𝑉 = 0𝑚𝑉, 𝑚 = 0.0529, 

ℎ = 0.5961 and 𝑛 = 0.3177 with sampling period 𝑇𝑠 = 0.01𝑠. 

 

Figure 1. Membrane potential 𝑉 vs sodium flow current 𝑚. 

4. Numerical Results 

In this section, the state estimation results are plotted separately 

and a comparative table is shown to discuss the estimation 
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performances of nonlinear observers in root-mean squared errors 

(RMSE). The main goal of the study is to provide accurate state 

estimation results for HH neuronal model using different 

nonlinear observers. At the same time, we have chance to 

compare and discuss the observer’s estimation capability. In 

order to get fair estimation results, the observers are initialized 

with same states and the parameters observers are tuned to get 

best estimation results for each designed observer.  

 

a) Membrane potential (𝑉) estimate (mV) 

 

b) Activation of the sodium flow current (𝑚) estimate 

 

c) Inactivation of the sodium flow current   (ℎ) estimate 

 

d) Activation of the potassium flow current (𝑛) estimate 

Figure 2. DBGO estimation results for Hodgkin-Huxley neuronal 

model.  

Fig 2 presents state estimation results using DBGO. The 

estimation results are very accurate for all four states such that 

the estimated states are rapidly converging to the real neuron 

states which are promising to use for real-time control studies. 

 

a) Membrane potential (𝑉) estimate (mV) 

 

b) Activation of the sodium flow current (𝑚) estimate 

 

c) Inactivation of the sodium flow current   (ℎ) estimate 

 

d) Activation of the potassium flow current (𝑛) estimate 
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Figure 3. SMO estimation results for Hodgkin-Huxley neuronal 

model.  

SMO based state estimation results are shown in Fig. 3, 

respectively. The estimated states are following to the real states 

slightly late compared to the DBGO estimation results. However, 

after a few milliseconds, the real states are estimated accurately. 

The design parameters of the SMO are determined through grid 

search as follows: ℎ1 = 8 × 10−2, ℎ2 = 1 × 10−4 , ℎ3 = 1 ×
10−4 , ℎ4 = 1 × 10−5, 𝑑1 = 1 × 10−5 , 𝑑2 = 1 × 10−4 , 
𝑑3 = 1 × 10−5 and  𝑑4 = 1 × 10−4  , respectively. 

 

a) Membrane potential (𝑉) estimate (mV) 

 

b) Activation of the sodium flow current (𝑚) estimate 

 

c) Inactivation of the sodium flow current   (ℎ) estimate 

 

d) Activation of the potassium flow current (𝑛) estimate 

Figure 4. EKF estimation results for Hodgkin-Huxley neuronal 
model. 
For the HH neuronal model, EKF observer based state estimation 

results are obtained and presented in Figure 4, respectively. It is 

seen that the EKF is slower than the DBGO and SMO. The 

design parameters of the EKF are determined through grid search 

as follows:𝐏0  =  10−2𝐈4 , 𝐐 =  0.1𝐈4 , and R =  10−1, 
respectively.  

Table 2: Comparison results of designed observers 

HH Model DBGO SMO EKF 

RMSE 0.1723 0.3283 0.5293 

 
The numerical simulations are summarized in Table 2 for the HH 

neuronal model. The RMSE errors of the estimations are similar 

with figures. It is seen that the DBGO observer is much better 

than both SMO and EKF for the model based neuronal model 

state estimations. DBGO observer is based on the mathematical 

model of the system such that there is no parameter to adjust. 

However, SMO and EKF are difficult to design. Neuronal model 

has fast dynamics and the states have small values. Therefore, it 

is one of the difficulties for parameter adjustment and the 

selection of sampling time in integration routine.  

5. Conclusion 

The designed nonlinear observers can be discussed and compared 

addressing the design conditions and performance results. The 

design conditions are mostly about the parameter selection and 

updating rule of the designed observer. If we want to order the 

designed nonlinear observers here about structural complexity, 

the simplest one is the SMO observer, which is designed as a 

classical sliding mode observer in this study. Beside its simple 

structure of classical SMO, there is faced very difficult parameter 

selection problem. For a four state system estimation, there is 

required to define eight parameters. Second observer is the 

DBGO observer here which has a complex state updating rule is 

based on the gradient update. The advantage of the DBGO is that 

there is no parameter tuning for a state estimation. On the other 

hand, there is needed to define Jacobian matrix and detailed 

update rule based on the RK discretization. Third observer is the 

EKF. EKF has a parametric structure where the estimation 

accuracy depends on the choice of process and measurement 

noise covariance matrices. Finally, we can rank the sensing 

algorithms from the one having the simplest structure to the most 

complex one as SMO, DBGO, EKF, respectively.  

 

In order to compare the performance of the designed observers 

for state estimation results of HH neuronal model the Table 2 can 

be seen in detail. In the experiments, SMO exhibits better 

estimation performance than EKF. This is mainly because SMO 

exhibits robustness to the parameter uncertainties such that there 

could be uncertain or un-modeled dynamics of the systems. 

Moreover, DBGO does not need parameters which rectify the 

error dynamics where Levenberg-Marquardt direction is chosen 

for the faster convergence. There is an important difference 

between DBGO observer and other observer results in the Table 

2. The second order gradient direction of the DBGO observer 

makes very fast the observer dynamics. However, it has a lack of 

robustness since any tiny change in the dynamics affect the 

observer performance.  
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As a general result, if we want to design a feedback controller or 

an online fault estimator, we need to check the model uncertainty 

and noise existence. If there is small unmodeled dynamics, the 

DGBO is a suitable selection. In the case of noise and 

uncertainty, the SMO must be chosen. 
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