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Abstract: One of the widespread image processing applications is image filtering with two dimensional convolution. Determining the 

weights of image filters are of importance for the success of filtering operation. Heuristic algorithms such as genetic algorithms provide 

an efficient way of training these types of filters. Due to the high computational cost of repetitive image filtering operations, this process 

may take hours to implement using single core computing. OpenMP (Open Multi Processing) provides an efficient library for utilizing 

the computing power of multicore processors.  In this study, OpenMP accelerated training of separable filters that are a subclass of 

convolution filters has been implemented based on genetic algorithms. Comparative speed-up results for various sizes of images using 

various sizes of filtering kernels were presented. Also the effect of population size of genetic algorithm and the number of working cores 

have been investigated. 
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1. Introduction 

Image filters are widespread operators in image processing 

applications such as image enhancement, image smoothing, edge 

detection and noise elimination [1]. Linear filtering using two 

dimensional convolution or correlation is one of the main 

filtering operations. This is realized by applying the filtering 

kernel to each pixel of input image where the kernel is a matrix of 

weights. The size of the matrix can be 3×3 or 5×5 larger such as 

21×21. If the kernel has symmetric properties, it can be expressed 

as the multiplication of a row and column vectors. This form is 

called as separable filter and it reduces the number of 

multiplication/addition operations. 

The values of the filter weights are determined according to the 

desired behaviour of the filter. Weights can readily be obtained 

using different analytical techniques [2-3]. In another approach, 

the kernel weights can be trained using the original and noisy 

image samples [4-7]. Heuristic algorithms provide an efficient 

way for the computation of the filter kernel weights [8-10]. One 

of the well-known heuristic algorithms is Genetic algorithm 

which provided its efficiency in various researches. Genetic 

algorithm is selected to train the weights of the separable filter. In 

the application of genetic algorithms, a fitness function is used to 

define the problem. In the present case, fitness functions is 

formed according to mean squared value of original and noisy 

images. For the computation of fitness function, intense 

multiplication and addition operations are carried out to obtain 

fitness value. Furthermore, computation time depends on the 

number of weights as well as the image size. During 

computations, fitness function is called at each iteration of the 

genetic algorithm. This significantly slow down the process and 

make the applications impractical. A method for the acceleration 

of the process is to utilize the computational power of multicore 

processor.  For this purpose, OpenMP provides a useful tool for 

efficient use of the cores of a multicore processor. OpenMP helps 

distribute the computational load to defined number of threads.  

In the present study, OpenMP is utilized to accelerate the 

computation of fitness function. Fitness function is computed for 

all individuals in the population and these operation can be 

realized independently on processor cores. In the experiments, an 

eight core computer is used and the results are obtained against 

the number of cores to see the effect of the number of cores. Also 

various filter kernel sizes, image sizes and the population sizes 

used in the experiments to show the efficiency of the OpenMP 

based acceleration. 

2. Separable Image Fılters 

Separable image filters are used in a slightly different way from 

the non-separable filters. An example of non-separable image 

filter is shown by Fig. 1 which has size 3×3. The filter kernel has 

a total of 9 weights. This means that the image filtering process 

train weights number of genetic algorithms is 9. When the size of 

the filter kernel grows, it is increasing training time of genetic 

algorithms. For instance, 25 weights for the filter kernel with 

5×5, 49 weights for the filter kernel with 7×7, 81 weights for the 

filter kernel with 9×9, etc. The growth of genetic algorithms filter 

kernel increases the training time. The 3×3 filter kernel used in 

separable image filter is shown in Fig 1.  This filter kernel which 

horizontal and vertical vectors as shown in Fig. 2 in the separable 

image filter is used. 

 

 

 

 

 

Figure 1. 3×3 Filter size which filter kernel. 
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The product of this vector also gives the filter kernel shown in 

Fig. 1. 

 

 

 

 

 

 

 

Figure 2. Separable image filter is used filter kernel. 

Separable image filtering process can be divided into two stages. 

The first stage is to filter noisy image using one of the vectors. 

The second stage is to filter the resulting image from the first 

stage using the other vector. Therefore, image filtering process is 

completed in two stages. Separable image filter has the advantage 

of reduced number of weights over non-separable filter. For 

example, the number of filter weights to be trained in separable 

image filter for 5×5 is 10, while it is 25 for non-separable image 

filter.  

3. Genetic Algorithms 

Genetic algorithm is a search and optimization method which is 

based on natural selection [7, 11-12]. Genetic algorithms 

randomly generate multiple solutions. Bad solutions are 

eliminated in the next generation.  Therefore, best solutions 

appear as the best solutions transferred to next generations. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Genetic algorithm steps. 

Genetic algorithm involves applying selection, crossover, 

mutation and Fitness calculations on candidate population which 

are initially formed randomly. A pseudo code illustrating the 

operation of genetic algorithms is shown in Fig. 3. In the present 

case, computationally most intensive part is calculating the value 

of the fitness function due to the image filtering operations. 

4. OpenMP (Open Multi Processing) 

OpenMP is an application programming interface (API) which 

provide opportunity parallel computing on multicore processors. 

The calculations are done on multi-core processor architectures 

OpenMP thanks to coequally distribute all core [13]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OpenMP Architecture is shown figure 4. OpenMP, compiler 

directives, runtime library and environment variables are 

comprised from. Programmers write the code to run concurrently 

by putting special comments in that codes.For instance “#pragma 

omp parallel”. This study was parallelization of the fitness value 

calculating for “for” block.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. OpenMP hierarchy of 2D array[14]. 

OpenMP’s operation diagram is shown in Fig 5. OpenMP is 

identified one of the threads as main thread. Tasks are distributed 

in equal amounts other threads by the main thread. Due to the fact 

that this study was developed with C programming language, to 

use the OpenMP function “#include <omp.h>” as is included in 

the project [15]. 

Fig. 6 shows the area of the genetic algorithms parallelization 

process on the flow chart. This block is calculated fitness 

function value. This block contains computationally intensive 

mathematical operations. Therefore parallelization process is 

performed here.  
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Figure 4. OpenMP architecture [14]. 
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Figure 6. Computation of fitness functions using OpenMP. 

5. Experimental Results and Discussion 

Experimental studies on Windows Server 2012 Essentials™ 64-

bit operating system, Quad-Core AMD Opteron™ 2378 2.40GHz 

dual processor, 18GB Ram, have been working on computer 

servers. The algorithm is written in C programming language. In 

the experiments, 256×256, 512×512 and 1024×1024 with a pixel 

size images are used [16]. 3×3, 5×5 and 7×7 sizes filter masks are 

used for images filtering process. The developed algorithm was 

running 10 times for each image and at the end of working, these 

10 average MSE (Mean Squared Error) value and average 

training time are taken. The number of population for analysing 

the impact of population on training time while 100 and 200 were 

obtained results determined separately. The number of iterations 

has been fixed at 400 for all calculations. Mutation rate 0.005 and 

crossover rate 0.3 is defined as the constant.  Termination criteria 

of genetic algorithms are defined as the number of iterations. 

Noisy image used were obtained by adding Gaussian noise on the 

original image. 

 

Table 1. Computation times for 100 population and 3x3 filter kernel 

100 Population, 3×3 Filter Kernel 

Image Size 
Core Numbers (TIME (Minute)) 

1 Core 2 Core 4 Core 6 Core 8 Core 

256×256 3.43 1.71 0.90 0.75 0.50 

512×512 14.81 7.17 4.06 3.25 2.88 

1024×1024 55.52 29.11 16.28 12.83 12.27 

 

Table 2. Computation times for 200 population and 3x3 filter kernel 

200 Population, 3x3 Filter Kernel 

Image Size 
Core Numbers (TIME (Minute)) 

1 Core 2 Core 4 Core 6 Core 8 Core 

256×256 6.74 3.20 1.70 1.58 0.94 

512×512 25.93 14.60 8.10 6.20 5.59 

1024×1024 107.02 55.85 34.34 24.66 23.07 

 

 

 

 

 

 

Table 3. Computation times for 100 population and 5x5 filter kernel 

100 Population, 5×5 Filter Kernel 

Image Size 
Core Numbers (TIME (Minute)) 

1 Core 2 Core 4 Core 6 Core 8 Core 

256×256 3.97 2.02 1.13 1.00 0.62 

512×512 16.16 8.79 4.86 3.61 3.03 

1024×1024 68.75 34.85 19.67 14.03 12.42 

 

Table 4. Computation times for 200 population and 5x5 filter kernel 

200 Population, 5×5 Filter Kernel 

Image Size 
Core Numbers (TIME (Minute)) 

1 Core 2 Core 4 Core 6 Core 8 Core 

256×256 8.47 4.24 2.30 1.74 1.16 

512×512 32.46 17.08 9.33 6.96 5.80 

1024×1024 138.97 69.68 38.47 27.50 23.81 

 

Table 5. Computation times for 100 population and 7x7 filter kernel 

100 Population, 7×7 Filter Kernel 

Image Size 
Core Numbers (TIME (Minute)) 

1 Core 2 Core 4 Core 6 Core 8 Core 

256×256 4.03 2.29 1.27 1.14 0.69 

512×512 19.27 9.65 5.68 3.86 3.00 

1024×1024 77.81 38.79 21.85 15.63 12,29 

 

Table 6. Computation times for 200 population and 7x7 filter kernel 

200 Population, 5×5 Filter Kernel 

Image Size 
Core Numbers (TIME (Minute)) 

1 Core 2 Core 4 Core 6 Core 8 Core 

256×256 9.54 4.75 2.64 2.02 1.30 

512×512 36.45 20.87 10.68 7.52 5.93 

1024×1024 157.92 80.12 42.75 29.94 24.52 

 

Table 1 and Table 2 shows the computational times for 3×3 

window using 100 and 200 populations respectively. Table 3 and 

Table 4 shows the computational times for 5×5 window using 

 

Calculate Fitness 

Function Value 1 

Calculate Fitness 

Function Value 2 

Calculate Fitness 

Function Value N 



This journal is © Advanced Technology & Science 2013 IJAMEC, 2016, 4(Special Issue), 90–94  |  93 

100 and 200 populations respectively. Table 5 and Table 6 shows 

the computational times for 7×7 window using 100 and 200 

populations respectively. All results show that as the number of 

cores increased, the computational times reduces significantly. 

Figure 7a to 7f show the graphical comparison of the results. Best 

acceleration rates are obtained for 256×256 image. 

 

  

 

6. Conclusion 

In this study, OpenMP with accelerated training of separable 

image filter were analysed. In the experimental results, various 

sizes of kernels, and images and population sizes were tested. 

According to the results, doubling the population size has an 

increasing effect when the speed-up values on the average. 

Increasing the kernel size doesn’t change the results much. In 

general, the results show significant accelerations over single 

core running durations. For future studies the results will be 

obtained on a machine to see the efficiency limit of the number of 

cores.  
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