

International Journal of

Applied Mathematics,

Electronics and Computers

Advanced Technology and Science

ISSN: 2147-82282147-6799 http://ijamec.atscience.org Original Research Paper

This journal is © Advanced Technology & Science 2013 IJAMEC, 2016, 4(Special Issue), 90–94 | 90

Performance Evaluations for OpenMP Accelerated Training Of

Separable Image Filter

Süleyman UZUN*
1
, Devrim AKGÜN

2

Accepted 3rd September 2016

Abstract: One of the widespread image processing applications is image filtering with two dimensional convolution. Determining the

weights of image filters are of importance for the success of filtering operation. Heuristic algorithms such as genetic algorithms provide

an efficient way of training these types of filters. Due to the high computational cost of repetitive image filtering operations, this process

may take hours to implement using single core computing. OpenMP (Open Multi Processing) provides an efficient library for utilizing

the computing power of multicore processors. In this study, OpenMP accelerated training of separable filters that are a subclass of

convolution filters has been implemented based on genetic algorithms. Comparative speed-up results for various sizes of images using

various sizes of filtering kernels were presented. Also the effect of population size of genetic algorithm and the number of working cores

have been investigated.

Keywords: OpenMP, separable filters, image processing, genetic algorithms.

1. Introduction

Image filters are widespread operators in image processing

applications such as image enhancement, image smoothing, edge

detection and noise elimination [1]. Linear filtering using two

dimensional convolution or correlation is one of the main

filtering operations. This is realized by applying the filtering

kernel to each pixel of input image where the kernel is a matrix of

weights. The size of the matrix can be 3×3 or 5×5 larger such as

21×21. If the kernel has symmetric properties, it can be expressed

as the multiplication of a row and column vectors. This form is

called as separable filter and it reduces the number of

multiplication/addition operations.

The values of the filter weights are determined according to the

desired behaviour of the filter. Weights can readily be obtained

using different analytical techniques [2-3]. In another approach,

the kernel weights can be trained using the original and noisy

image samples [4-7]. Heuristic algorithms provide an efficient

way for the computation of the filter kernel weights [8-10]. One

of the well-known heuristic algorithms is Genetic algorithm

which provided its efficiency in various researches. Genetic

algorithm is selected to train the weights of the separable filter. In

the application of genetic algorithms, a fitness function is used to

define the problem. In the present case, fitness functions is

formed according to mean squared value of original and noisy

images. For the computation of fitness function, intense

multiplication and addition operations are carried out to obtain

fitness value. Furthermore, computation time depends on the

number of weights as well as the image size. During

computations, fitness function is called at each iteration of the

genetic algorithm. This significantly slow down the process and

make the applications impractical. A method for the acceleration

of the process is to utilize the computational power of multicore

processor. For this purpose, OpenMP provides a useful tool for

efficient use of the cores of a multicore processor. OpenMP helps

distribute the computational load to defined number of threads.

In the present study, OpenMP is utilized to accelerate the

computation of fitness function. Fitness function is computed for

all individuals in the population and these operation can be

realized independently on processor cores. In the experiments, an

eight core computer is used and the results are obtained against

the number of cores to see the effect of the number of cores. Also

various filter kernel sizes, image sizes and the population sizes

used in the experiments to show the efficiency of the OpenMP

based acceleration.

2. Separable Image Fılters

Separable image filters are used in a slightly different way from

the non-separable filters. An example of non-separable image

filter is shown by Fig. 1 which has size 3×3. The filter kernel has

a total of 9 weights. This means that the image filtering process

train weights number of genetic algorithms is 9. When the size of

the filter kernel grows, it is increasing training time of genetic

algorithms. For instance, 25 weights for the filter kernel with

5×5, 49 weights for the filter kernel with 7×7, 81 weights for the

filter kernel with 9×9, etc. The growth of genetic algorithms filter

kernel increases the training time. The 3×3 filter kernel used in

separable image filter is shown in Fig 1. This filter kernel which

horizontal and vertical vectors as shown in Fig. 2 in the separable

image filter is used.

Figure 1. 3×3 Filter size which filter kernel.

2

1 1

1 1

4

2

2 2

1 Information Technologies Department, Bilecik Şeyh Edebali University,

Gülümbe Campus, 11230, Bilecik/Turkey
2 Computer Engineering Department, Faculty of Computer and

Information Sciences, Sakarya University, Esentepe Campus, 54187,

Sakarya/Turkey

* Corresponding Author: Email: suleyman.uzun@bilecik.edu.tr

Note: This paper has been presented at the 3rd International Conference

on Advanced Technology & Sciences (ICAT'16) held in Konya (Turkey),

September 01-03, 2016.

mailto:suleyman.uzun@bilecik.edu.tr

This journal is © Advanced Technology & Science 2013 IJAMEC, 2016, 4(Special Issue), 90–94 | 91

The product of this vector also gives the filter kernel shown in

Fig. 1.

Figure 2. Separable image filter is used filter kernel.

Separable image filtering process can be divided into two stages.

The first stage is to filter noisy image using one of the vectors.

The second stage is to filter the resulting image from the first

stage using the other vector. Therefore, image filtering process is

completed in two stages. Separable image filter has the advantage

of reduced number of weights over non-separable filter. For

example, the number of filter weights to be trained in separable

image filter for 5×5 is 10, while it is 25 for non-separable image

filter.

3. Genetic Algorithms

Genetic algorithm is a search and optimization method which is

based on natural selection [7, 11-12]. Genetic algorithms

randomly generate multiple solutions. Bad solutions are

eliminated in the next generation. Therefore, best solutions

appear as the best solutions transferred to next generations.

Figure 3. Genetic algorithm steps.

Genetic algorithm involves applying selection, crossover,

mutation and Fitness calculations on candidate population which

are initially formed randomly. A pseudo code illustrating the

operation of genetic algorithms is shown in Fig. 3. In the present

case, computationally most intensive part is calculating the value

of the fitness function due to the image filtering operations.

4. OpenMP (Open Multi Processing)

OpenMP is an application programming interface (API) which

provide opportunity parallel computing on multicore processors.

The calculations are done on multi-core processor architectures

OpenMP thanks to coequally distribute all core [13].

OpenMP Architecture is shown figure 4. OpenMP, compiler

directives, runtime library and environment variables are

comprised from. Programmers write the code to run concurrently

by putting special comments in that codes.For instance “#pragma

omp parallel”. This study was parallelization of the fitness value

calculating for “for” block.

Figure 5. OpenMP hierarchy of 2D array[14].

OpenMP’s operation diagram is shown in Fig 5. OpenMP is

identified one of the threads as main thread. Tasks are distributed

in equal amounts other threads by the main thread. Due to the fact

that this study was developed with C programming language, to

use the OpenMP function “#include <omp.h>” as is included in

the project [15].

Fig. 6 shows the area of the genetic algorithms parallelization

process on the flow chart. This block is calculated fitness

function value. This block contains computationally intensive

mathematical operations. Therefore parallelization process is

performed here.

*

2

1

1 1

4

Initial population

Fitness

While (termination criteria is not met)

Selection

Crossover

Mutation

Fitness

End while

Process 0

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

OpenMP

Threads in Operating System

Runtime Library

Environment

Variables

 Application

User

Complier

Directives

Figure 4. OpenMP architecture [14].

92 | IJAMEC, 2016, 4(Special Issue), 90–94 This journal is © Advanced Technology & Science 2013

Figure 6. Computation of fitness functions using OpenMP.

5. Experimental Results and Discussion

Experimental studies on Windows Server 2012 Essentials™ 64-

bit operating system, Quad-Core AMD Opteron™ 2378 2.40GHz

dual processor, 18GB Ram, have been working on computer

servers. The algorithm is written in C programming language. In

the experiments, 256×256, 512×512 and 1024×1024 with a pixel

size images are used [16]. 3×3, 5×5 and 7×7 sizes filter masks are

used for images filtering process. The developed algorithm was

running 10 times for each image and at the end of working, these

10 average MSE (Mean Squared Error) value and average

training time are taken. The number of population for analysing

the impact of population on training time while 100 and 200 were

obtained results determined separately. The number of iterations

has been fixed at 400 for all calculations. Mutation rate 0.005 and

crossover rate 0.3 is defined as the constant. Termination criteria

of genetic algorithms are defined as the number of iterations.

Noisy image used were obtained by adding Gaussian noise on the

original image.

Table 1. Computation times for 100 population and 3x3 filter kernel

100 Population, 3×3 Filter Kernel

Image Size
Core Numbers (TIME (Minute))

1 Core 2 Core 4 Core 6 Core 8 Core

256×256 3.43 1.71 0.90 0.75 0.50

512×512 14.81 7.17 4.06 3.25 2.88

1024×1024 55.52 29.11 16.28 12.83 12.27

Table 2. Computation times for 200 population and 3x3 filter kernel

200 Population, 3x3 Filter Kernel

Image Size
Core Numbers (TIME (Minute))

1 Core 2 Core 4 Core 6 Core 8 Core

256×256 6.74 3.20 1.70 1.58 0.94

512×512 25.93 14.60 8.10 6.20 5.59

1024×1024 107.02 55.85 34.34 24.66 23.07

Table 3. Computation times for 100 population and 5x5 filter kernel

100 Population, 5×5 Filter Kernel

Image Size
Core Numbers (TIME (Minute))

1 Core 2 Core 4 Core 6 Core 8 Core

256×256 3.97 2.02 1.13 1.00 0.62

512×512 16.16 8.79 4.86 3.61 3.03

1024×1024 68.75 34.85 19.67 14.03 12.42

Table 4. Computation times for 200 population and 5x5 filter kernel

200 Population, 5×5 Filter Kernel

Image Size
Core Numbers (TIME (Minute))

1 Core 2 Core 4 Core 6 Core 8 Core

256×256 8.47 4.24 2.30 1.74 1.16

512×512 32.46 17.08 9.33 6.96 5.80

1024×1024 138.97 69.68 38.47 27.50 23.81

Table 5. Computation times for 100 population and 7x7 filter kernel

100 Population, 7×7 Filter Kernel

Image Size
Core Numbers (TIME (Minute))

1 Core 2 Core 4 Core 6 Core 8 Core

256×256 4.03 2.29 1.27 1.14 0.69

512×512 19.27 9.65 5.68 3.86 3.00

1024×1024 77.81 38.79 21.85 15.63 12,29

Table 6. Computation times for 200 population and 7x7 filter kernel

200 Population, 5×5 Filter Kernel

Image Size
Core Numbers (TIME (Minute))

1 Core 2 Core 4 Core 6 Core 8 Core

256×256 9.54 4.75 2.64 2.02 1.30

512×512 36.45 20.87 10.68 7.52 5.93

1024×1024 157.92 80.12 42.75 29.94 24.52

Table 1 and Table 2 shows the computational times for 3×3

window using 100 and 200 populations respectively. Table 3 and

Table 4 shows the computational times for 5×5 window using

Calculate Fitness

Function Value 1

Calculate Fitness

Function Value 2

Calculate Fitness

Function Value N

This journal is © Advanced Technology & Science 2013 IJAMEC, 2016, 4(Special Issue), 90–94 | 93

100 and 200 populations respectively. Table 5 and Table 6 shows

the computational times for 7×7 window using 100 and 200

populations respectively. All results show that as the number of

cores increased, the computational times reduces significantly.

Figure 7a to 7f show the graphical comparison of the results. Best

acceleration rates are obtained for 256×256 image.

6. Conclusion

In this study, OpenMP with accelerated training of separable

image filter were analysed. In the experimental results, various

sizes of kernels, and images and population sizes were tested.

According to the results, doubling the population size has an

increasing effect when the speed-up values on the average.

Increasing the kernel size doesn’t change the results much. In

general, the results show significant accelerations over single

core running durations. For future studies the results will be

obtained on a machine to see the efficiency limit of the number of

cores.

References

[1] R. C. Gonzalez and R. E. Woods, Digital Image

Processing (3rd Edition). 2007.

[2] A. Karasaridis and E. Simoncelli, “A filter design

technique for steerable pyramid image transforms,” 1996

IEEE Int. Conf. Acoust. Speech, Signal Process. Conf.

Proc., vol. 4, pp. 2387–2390, 1996.

[3] J. Yang, L. Liu, T. Jiang, and Y. Fan, “A modified

Gabor filter design method for fingerprint image

Figure 7. Comparative acceleration graphs.

(a)

(b)

(c)

(d)

(e)

(f)

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

2 Core 4 Core 6 Core 8 Core

S
p

ee
d

-U
p

Core Numbers

100 Population, 3x3 Filter Kernel

256x256

512x512

1024x1024

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

2 Core 4 Core 6 Core 8 Core

S
p

ee
d

-U
p

Core Numbers

200 Population, 3x3 Filter Kernel

256x256

512x512

1024x1024

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

2 Core 4 Core 6 Core 8 Core

S
p

ee
d

-U
p

Core Numbers

100 Population, 5x5 Filter Kernel

256x256

512x512

1024x1024

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

2 Core 4 Core 6 Core 8 Core

S
p

ee
d

-U
p

Core Numbers

200 Population, 5x5 Filter Kernel

256x256

512x512

1024x1024

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

2 Core 4 Core 6 Core 8 Core

S
p

ee
d

-U
p

Core Numbers

100 Population, 7x7 Filter Kernel

256x256

512x512

1024x1024

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

2 Core 4 Core 6 Core 8 Core

S
p

ee
d

-U
p

Core Numbers

200 Population, 7x7 Filter Kernel

256x256

512x512

1024x1024

94 | IJAMEC, 2016, 4(Special Issue), 90–94 This journal is © Advanced Technology & Science 2013

enhancement,” Pattern Recognit. Lett., vol. 24, no. 12,

pp. 1805–1817, 2003.

[4] R. Poli, “Genetic Programming for Image Analysis,” in

Genetic Programming 1996: Proceedings of the First

Annual Conference, 1996, pp. 363–368.

[5] D. Akgün and P. Erdoğmuş, “GPU accelerated training

of image convolution filter weights using genetic

algorithms,” Appl. Soft Comput., vol. 30, pp. 585–594,

2015.

[6] D. J. Krusienski and W. K. Jenkins, “Particle swarm

optimization for adaptive IIR filter structures,”

Evolutionary Computation, 2004. CEC2004. Congress

on, vol. 1. p. 965–970 Vol.1, 2004.

[7] G. J. E. Rawlins, “Foundations of Genetic Algorithms,”

in Foundations of Genetic Algorithms, 1991, vol. 21, p.

341.

[8] M. Haseyama and D. Matsuura, “A filter coefficient

quantization method with genetic algorithm, including

simulated annealing,” Signal Process. Lett. IEEE, 2006.

[9] D. M. Weber and D. P. Casasent, “Quadratic Gabor

filters for object detection,” IEEE Trans. Image

Process., vol. 10, no. 2, pp. 218–230, 2001.

[10] Y. Wang, B. Li, and Y. Chen, “Digital IIR filter design

using multi-objective optimization evolutionary

algorithm,” Appl. Soft Comput., 2011.

[11] G. Emel and Ç. TAŞKIN, “Genetik Algoritmalar ve

Uygulama Alanlari,” Uludağ Üniversitesi İktisadi ve

İdari Bilim., 2002.

[12] K. de Jong, “Learning with Genetic Algorithms: An

Overview,” Mach. Learn., vol. 3, no. 2, pp. 121–138,

1988.

[13] A. S. Al-Hamoudi and A. Ahmed Biyabani,

“Accelerating data mining with CUDA and OpenMP,”

in 2014 IEEE/ACS 11th International Conference on

Computer Systems and Applications (AICCSA), 2014,

pp. 528–535.

[14] “OpenMP Architecture.” [Online]. Available:

http://www.lrz.de/services/software/parallel/openmp/.

[15] H. P. Computing, “Parallel Programming with

OpenMP,” Sci. Technol., pp. 1–91, 2010.

[16] G. Weber, “USC-SIPI image database: Version 4,”

1993.

