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Abstract: In this paper, Autoregressive with exogenous input (ARX) and dynamic neural network (DNN) based generalized predictive 

control (GPC) methods are designed to control of nonlinear systems. ARX and DNN models adaptively approximate the plant dynamics 

and predict the future behavior of the nonlinear system. While control process goes on, the poles of the ARX and DNN models are 

constrained in a stable region using a projection operator for structural stability. Simulation results are given to compare the tracking 

performances of the methods. ARX-GPC and DNN-GPC both yield good tracking performances while keeping the changes in control 

signal as low as possible. The simulation results show that even though ARX is a linear model, it provides acceptable tracking results as 

well as DNN model. 

Keywords: Generalized predictive control, ARX, dynamic neural network, Kalman filter and extended Kalman filter, nonlinear systems 

and adaptive learning rate. 

 

1. Introduction 

Identification of systems with unknown mathematical model, 

control and fault detection studies keep their importance up-to-

date [1]. It is a hard task to obtain a mathematical model in 

complex systems. In addition, need for system modelling emerges 

due to uncertainty, disturbances and noises. In such cases, robust 

or adaptive control techniques should be adopted to design a 

controller [8]. In adaptive control, an appropriate model is 

selected to approximate the actual system model. Artificial neural 

network (ANN) and fuzzy networks are widely used as function 

estimators [25, 2]. 

GPC is a class of model-based predictive control. When 

dynamics of the system are not known, the model which 

approximates the system has a crucial role in both predicting the 

future behaviour of the system and generating the future control 

signals. In each sampling instant first one of the produced control 

signals is applied to the system [4, 3]. The models which are able 

to adapt to the changing dynamics of systems improve GPC 

performance. Artificial neural network (ANN) [21, 17] and 

support vector machine (SVM) [9, 14] can be adopted in GPC 

studies. 

DNNs [20] have a recursive structure. Internal states and external 

inputs constitute the actual inputs of these networks which are 

widely used in function approximation. DNNs can approximate 

complex nonlinear dynamics due to the merits of recursive 

structure and nonlinear activation function [22]. Usually they are 

used in prediction [6], fault detection [12], adaptive control [16] 

and GPC [24]. 

In this study, particular type DNN and AutoRegressive with 

eXagenous input (ARX) model based GPC are performed. ARX 

is a linear model while both linear and nonlinear dynamics exists 

in the DNN model. Models are trained by extended Kalman filter 

(EKF).  

In addition to adaptation of the parameters, poles are adapted 

such that they are bounded to maintain stability of the model. 

Thus, quick and stable online identification is obtained. In 

numerical simulations, bioreactor and continuously-stirred tank 

reactor (CSTR) benchmark systems are controlled using two 

methods and results are compared. 

Rest of the paper is organized as follows. In Section 2, DNN and 

ARX models are presented; model stability and EKF-based 

training are introduced. GPC and ARX and DNN based GPC are 

detailed in Section 3. Simulations are given in Section 4. Finally, 

paper is concluded in Section 5. 

2. Identification Models 

In this section, ARX model and the DNN model which is used in 

continuous time adaptive control in [13] will be studied for 

discrete time GPC. Section 2.1 and 2.2 present the ARX and 

DNN models while Section 2.3 introduces the model stability. 

Finally, EKF-based training of the models is given in Section 2.4. 

2.1. ARX Model 

ARX model is simple and linear. Consider un  and yn
 are the past 

input and output samples to construct the ARX data. Let (1) give 

the output equation of a system at time instant k  whose explicit 

output expression is unknown.  
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 Output can be approximated linearly by a parameter vector 
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θ  such as  
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2.2. Dynamic Neural Network 

Figure 1 presents internal dynamics of one neuron in the dynamic 
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NN. States of the neurons are updated in discrete-time as given in 

(3) and (4).  

                         kkkk BcxATDxx  )(=1              (3) 

 kk Cxy =
 (4) 

Here, 
nRx  is state vector, 

mRc  and 
mRy  are input and 

output vectors respectively. Nonlinear activation function (.)T  is 

tangent hyperbolic function and is expressed as  
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mnRB  , nmRC   and the matrices D  and A  are as 

follows.  

 nn

nd

d

D






















1

=

 (7) 

 nn

na

a

A






















1

=

 (8) 

DNN model consists of linear ARX (AutoRegressive with 

eXogeneous input) model and nonlinear function tanh(.). Thus, 

identification of linear and nonlinear dynamic systems is aimed in 

a quick and efficient way.  

 

Figure  1: Dynamic neuron structure. 

This model can be considered as sparsed Hopfield type network 

in means of inter-neuron connections. Connection of each neuron 

with itself brings to the network dynamic property. Dashed lines 

in Figure 1 show nonexisting connections. From this aspect, 

model is diagonal. Figure 2 presents diagonal dynamic model.  

2.3. Model Stability 

The results in [7, 10] were reviewed to analyse the stability of the 

models and stability conditions given in [15] were followed in 

this study.  

First, ARX model stability is analysed. In the simulations ARX 

model is used as a second order IIR (Infinite Impulse Response) 

filter since 
2=yn

 is taken (see Section 4). 

 

Figure  2: Diagonal dynamic model. 

Parameters in the parameter vector kθ  which correspond to the 

past output samples are constrained with the stability condition as 

following.  
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Second, DNN model stability is analysed. State equation 

belonging to the thi  neuron in the discrete-time DNN model is 

given by  

 
nikubkxTakxdkx iiiiiii ,...,1,)())(ˆ()(ˆ=1)(ˆ 

 (10) 

k  is the time index, definition of the variables and model 

matrices are given in the previous section. Discrete-time state 

solution of the model given 0=(0) xx  as the initial state is 

obtained as follows.  
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Stability of the DNN model is directly related to the stability of 

the states since output vector of the DNN model is linearly 

related to the states as given in Equation (4). Neuron in Equation 

(10) can be considered as a first order ARX model. Stability of 

the DNN model expressed in Equation (3) is guaranteed by 

satisfying the following conditions.  
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Generally, 0ijb  is needed to be satisfied not for the internal 

stability but for the input to have effect on the output. 

2.4. Inequality Constrained EKF Based Training 

Inequality constrained EKF (ICEKF) is used to train model 

parameters. Parameter adaptation equations of ICEKF will be 

given in Section 2.4.1 and training of models will be detailed in 

Section 2.4.2. 

2.4.1. ICEKF 

State-space representation of a nonlinear discrete-time system is 

given in (13).  
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 11)(=   kkk wxfx
 (13) 

 kkk vxhy )(=
 (14) 

Here, 
nRx  is state vector, 

mRy  is system output, (.)f  is 

nonlinear process function vector, (.)h  is nonlinear measurement 

function vector, 
nRw  is process noise and 

mRv  is 

measurement noise, which both is Gaussian white noise. 

Extended Kalman filter can be summarized in two steps given Q  

and R  are covariance matrices corresponding to process and 

measurement noises respectively. 
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Measurement Update 
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In  (15) and  (16), 
nnRP   is state estimation error covariance 

matrix and kK
 is Kalman gain. 

(.)fJ
 and (.)hJ  are given in  (17) 

and  (18).  
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Let us consider there exist inequality constraints on states as 

given below in state estimation by ICEKF.  

 NMx  (19) 

Parameters must be within the constraint space to satisfy the 

constraints. By this reason, projection is taken onto the constraint 

space [19].  
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(20) presents the projection onto the constraint space as it yields 

the final optimum state estimation. kx
 and kP  stand for projected 

state estimation and corresponding error covariance matrix 
respectively. 

2.4.2. Training of Models by ICEKF 

Parameters of the ARX model exist directly in the parameter 

vector θ  while parameters of the DNN model are in the matrices

A , B , C  ve D . In ARX case y
n

u
n

R



1

θ . In DNN case, a 

parameter vector 
)2( mnnR θ  is generated as in (21) similar to 

[11] and [18].  

 

1

11

11

1

= [ ... ]

= [ ... ]

= [ ... ]

= [ ... ]

= [ ]

T

n

T

nm

T

mn

T

n

T T T T T

a a a

b b b

c c c

d d d

a b c dθ

  (21) 

When the parameter vector is obtained, parameters in both 

models are updated as follows.  
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 In  (22), )2(=, mnntRP tt  
 is estimation error covariance 

matrix of the parameters in the vector θ  and hJ
 is updated as 

follows.  

 









k

k
kh

y
J

θ

θ
θ

ˆ

)ˆ(
=)ˆ(

 (23) 

Projection onto the constraint space is taken as in (20) to satisfy 

the constraints in (9) for ARX model while in (12) for DNN 

model. For the DNN case, states are updated as in (3) using the 

parameters which are updated satisfying the constraints. Thus, 

states are not the ones which are estimated optimally but 

parameters in the vector θ  are. 

3. ARX and DNN Based Generalized Predictive 
Control 

Section 3.1 briefly introduces GPC while Section 3.2 and 3.3 

detail the ARX-based and DNN-based GPC respectively. 

3.1. GPC 

Let us have a NARX (Nonlinear Auto-Regressive with 

exogenous input) data model for a nonlinear system [9].  
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 As ny~  is the reference signal and nŷ  is the model output, GPC 

aims to have the model output track the reference signal with 

minimum tracking error possible while keeping the changes in 

the control signal as low as possible. Constraints exist on the 

control signal. 
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 , penalizes the abrupt changes in control signal. uK  and yK  

are horizon values up to how many future control inputs and 

model outputs will be calculated. Always, 
yu KK <  is satisfied. 
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. At each time 

instant, to make the system output track the reference signal for 

future yK
 samples, control input vector 
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][=
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 is 

generated and first element in the vector is applied to the system. 

To predict the future behaviour of the system whose output 

function is unknown, an appropriate model to approximate that 

system is used. Also that model is utilised for the gradient 

information which is necessary to update the control signal at 
each time instant. This update is expressed as follows.  

  uuu kk 1=    (27) 

 When Gauss-Newton modification is employed,  
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 is obtained and 
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 denotes the step size. It can be calculated 

optimally using one of the one-dimensional optimization methods 

in the literature. Gradient vector is the following.  
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 If derivative of (29) is taken to obtain Hessian matrix, a term 
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Considering (24), model output depends on the control signals 

that have a time index value which is smaller than or equal to that 

of the model output. Thus, the term 
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 Computational load of the derivatives depends on the model. 

3.2. ARX Based GPC 

Since the system is approximated by ARX model, 
u

Yn



  is 

obtained based on that model. Considering (2), future output 
prediction by the model is given by  
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 It can be written explicitly  
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 Thus, partial derivative expression will be  
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 1  is the unit step function. Obtained partial derivative is 

substituted in  (29) and  (30) to obtain the gradient vector and 

Hessian matrix. 

3.3. DNN Based GPC 

Since the system is approximated by DNN model, 
u
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  is 

obtained based on that model. Using (3) and (4), model output 
can be written alternatively as following.  
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 1  is the unit step function. Obtained partial derivative is 

substituted in (29) and  (30) to obtain the gradient vector and 

Hessian matrix. 

4. Computer Simulations 

ARX-based and DNN-based GPC controllers were tested on 

bioreactor [5] and continuously stirred tank reactor [23] systems. 

4.1. Bioreactor Control 

Bioreactor is a second order benchmark system to test tracking 

performance of the controllers. 

     

)(=)(0.02,=0.48,=

)(1

1
))()(1(

)()(=)(

))()(1()()(=)(

1

2

)(
2

21

22

)(
2

2111

txty

tx
etxtx

tutxtx

etxtxtutxtx

nom

tx

tx
































































 (42) 

 )(1 tx  and )(2 tx  are cell concentration and amount of nutrients 

per volume. Control signal )(tu  is the flow rate.   is time-

varying parameter of the process and has a nominal value of 0.48. 

Controllers were employed to make the reactor output track 

desired reference value with minimum tracking error possible. 

GPC parameters are 10=yK , 2=uK , 0.01= , 0=minu , 2=maxu , 
0.2=maxu , 

2=un
, 

2=yn
. Sampling period is 0.01=sT  s. For the 

DNN-based GPC case, number of states is set 5=n . In the 

simulation, )(0.050.060.48=)( tsint    oscillates around its 

nominal value. Figure 3 shows reference tracking and produced 

control signal by ARX-based GPC controller while Figure 4 

shows time evolution of parameters.  

 

 

Figure 3: Bioreactor reference tracking and control signal produced by 

ARX-based GPC controller. 

   Table 1: Comparison of tracking RMSE and uP  by ARX-based 

and DNN-based GPC controllers in bioreactor system. 

Controller   RMSE tracking  

 uP
  

ARX-based GPC   0.0105   1.3401  

DNN-based GPC   0.0099   1.2952  

 

   

Figure 4: Time evolution of parameters in control of bioreactor by ARX-

based GPC controller. 

Similarly, Figure 5 shows reference tracking and produced 

control signal by DNN-based GPC controller while Figure 6 

shows time evolution of parameters. Tracking performances of 

the controllers are compared in terms of Root-Mean-Squared-

Error (RMSE) and power of the produced control signal (

2

1=
|][|

1
= nu

N
P

N

k
u  ) in Table 1.   

ARX-based GPC controller tracks the reference signal with little 

oscillations while DNN-based GPC controller performs smoother 

tracking as expected. However, it has more overshoot compared 

to ARX-based GPC. Control signal is less aggressive in DNN-

based GPC. ARX-based GPC has still acceptable tracking 

performance.  

  

Figure 5: Bioreactor reference tracking and control signal produced by 

DNN-based GPC controller. 

   

Figure 6: Time evolution of parameters in control of bioreactor by DNN-

based GPC controller. 
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4.2. CSTR Control 

Continuously stirred tank reactor is a third order highly nonlinear 

system on which tracking performance of the controllers were 

tested.  
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 )(tu  is the control signal and 2d  is time-varying parameter of the 

process which has a nominal value of 1. Controllers were 

employed to make the reactor output track desired reference value 

with minimum tracking error possible. GPC parameters are 
10=yK

, 2=uK , 0.1= , 0=minu , 
1=maxu

, 0.1=maxu , 2=un , 2=yn . 

Sampling period is 0.1=sT  s. For the DNN-based GPC case, 

number of states is set 5=n . Figure 7 shows reference tracking 

and produced control signal by ARX-based GPC controller while 

Figure 8 shows time evolution of parameters.  

  

Figure 7: CSTR reference tracking and control signal produced by ARX-

based GPC controller. 

    

 

Figure 8: Time evolution of parameters in control of CSTR by ARX-

based GPC controller. 

Similarly, Figure 9 shows reference tracking and produced 

control signal by DNN-based GPC controller while Figure 10 

shows time evolution of parameters. Tracking performances of 

the controllers are compared in terms of RMSE and power of the 

produced control signal ( uP
) in Table 2.  It is noticed that in the 

first 40 seconds, smoother control signal is produced by ARX-

based GPC controller. After the parameters of DNN-based GPC 

controller sets approximately to their stationary values, it begins 

performing as smooth tracking as ARX-based GPC does. This is 

the reason why ARX-based GPC has little smaller tracking 

RMSE value. 

  

Figure 9: CSTR reference tracking and control signal produced by DNN-

based GPC controller. 

   

Figure 10: Time evolution of parameters in control of CSTR by DNN-

based GPC controller.   

Table 2: Comparison of tracking RMSE and uP
 by ARX-based 

and DNN-based GPC controllers in CSTR system. 

 Controller   RMSE tracking  

 uP
  

ARX-based GPC   0.0505   0.2891 

DNN-based GPC   0.0522   0.2924 

5. Conclusions 

This study presents a comparison of ARX and DNN models in 

GPC scheme. Tracking performance of models were compared 

on bioreactor and CSTR systems which are both nonlinear 

benchmark systems. Even though ARX is a linear model, it has 

proven to be an acceptable model for generalized predictive 

control of nonlinear systems. Moreover, structural stability is 

maintained in both models by constraining the poles in a stable 

region. As a general result, ARX and DNN models are adopted 

successfully in GPC scheme for both systems. 
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