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Abstract: This work focuses on robust variable structure control of a rotor-axial active magnetic bearing system. The electromagnetic 

force generated by active magnetic bearing is highly nonlinear characteristics. On the other hand, the magnetic force coefficient is a 

calculated value and its real value is not truly identified, therefore, robustness is a great importance in the operation of the active 

magnetic bearings system. On this works Lyapunov based three different type of variable structure controllers are proposed and 

experimentally tested. Robustness of the controllers were tested experimentally by creating some parametric uncertainty in the control 

system using an external disk mass attached to the rotor. The results of the controllers are also compared with conventional and linear 

robust controllers. 
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1. Introduction 

Active magnetic bearings (AMB) are electromechanical 

devices that provide noncontact support between rotor and 

bearing via the control of electromagnetic forces. Magnetically 

levitated rotors have many useful advantages like frictionless 

rotation. Owing to this, active magnetic bearings allow rotors to 

reach high rotational speeds [1-2]. However due to the nature of 

magnetic field, magnetically levitated rotor systems are highly 

nonlinear and AMBs are represented by nonlinear mathematical 

models [3-4]. Nevertheless they can be linearized successfully 

around the operating point thanks to the restricted and very small 

air gap between AMB stator and rotor [5]. As a result, many 

linear and local controllers like PID or fuzzy logic controllers [6-

7] have been successfully applied to AMB systems. These 

controllers can offer good performance around the operating 

point but outside these local regions where the effects of the 

nonlinearities become more evident. Model based controllers are 

developed to increase the performance of the AMB system. Due 

to the magnetic saturation and existence of eddy current effects 

identification of exact system parameter in a magnetic bearing 

system is not straight forward.  Therefore, robustness is a great 

importance for this type systems. There are available works on 

magnetic bearing system using robust control and linear matrix 

inequality design for controlling the motion of a magnetic bearing 

system [8-9]. Linear robust control and nonlinear adaptive 

backstepping control approaches have been studied by many 

researchers to maintain robustness in magnetic bearing systems 

[10-12]. Variable structure control theory has been implemented 

for many nonlinear processes including magnetic bearings [13-

15]. One of the main features of this approach is needs to drive 

the error to a switching surface after which the system is in 

sliding mode and will not be effected by and modelling 

uncertainties or disturbances. However, there are two main 

criticisms of these controllers when they are applied to 

mechanical systems, first ignoring the dynamics or physical 

properties of the mechanical system the controllers can do no 

better than other controllers that disregards the dynamics. 

Secondly, chattering is a common problem associated with the 

variable structure controllers. 
The remaining of the work is organized as follows: The 

mathematical model of an axial magnetic bearing system is given 

in Section 2, while the control problem formulation and error 

system development are stated in the control design section. 

Respectively the sliding mode control (SMC), high gain robust 

control (HGR) and high frequency robust control (HFR) are 

designed and experimental results are given in the rest of the 

paper.  

2. Axial Magnetic Bearing Model 

The axial active magnetic bearing produces attractive 

magnetic forces by the opposite coil electromagnets to limit the 

rotor movements in z direction. The structure of axial bearing in 

xOz plane is depicted in Fig.1 schematically. In this structure, a 

disk element is fixed to the rotor and a nominal gap 𝑧0 exists 

between the opposite coils and the disk element in both side.  A 

non-contact capacitive sensor is set to measure the axial 

displacement of the rotor. The aim of the control is to bring the 

disk element to the origin without any mechanical contact during 

levitation and rotation of the rotor. The parameters of the 

considered system are given in Table 1. Note that an external disk 

is possible to be fixed to the rotor to test the robustness of the 

controllers. 
In this study, it assumed that the radial and the axial directions 

are completely separated. This means two radial active magnetic 

bearings support the rotor in the radial directions and during the 

control operation a complete noncontact situation is realized. As 

depicted in Figure 1, the magnetic force 𝑓𝑧 is nonlinear in nature 

and is generated by the coils of bearing in the following form. 

𝑓𝑧 = 𝑓+ − 𝑓− = 𝑘 (
(𝑖0+𝑖𝑧)2

(𝑧0−𝑧)2 −
(𝑖0−𝑖𝑧)2

(𝑧0+𝑧)2) (1) 

where 𝑘 is a constant related to the magnetic bearing parameters. 

To derive the dynamical equation of the proposed system a 

linearized magnetic force is assumed to have the following form. 
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𝑚�̈� = 𝑘𝑧𝑧 + 𝑘𝑖𝑖𝑧                                                                         (2) 

where 𝑧(𝑡), �̈�(𝑡) ∈ ℜ  represent the rotor position and 

acceleration, respectively. Also, 𝑖𝑧(𝑡) ∈ ℜ denote the control 

current signal. Besides 𝑚 ∈ ℜ is the mass of the rotor, 𝑘𝑧 ∈ ℜ 

and 𝑘𝑖 ∈ ℜ are the constants according to displacement to force 

constant 𝑘𝑧 = 4𝑘(𝑖0
2 𝑧0

3⁄ ) and current to force constant 𝑘𝑖 =

4𝑘(𝑖0 𝑧0
2⁄ ) where; 𝑘𝑖 = 𝜇0𝑁2 𝐴 4⁄ . 

 

Figure 1. Schematic representation of the axial active magnetic bearing 

rotor system 

To ease the presentation of the subsequent control development, 

we divide both sides of the dynamics equation by the non–zero 

constant 𝑘𝑖 to obtain: 

𝑖𝑧 = 𝑀�̈� − 𝐶𝑧                                                                              (3) 

where 𝑀 ≜ 𝑚 𝑘𝑖⁄  and C≜ 𝑘𝑧 𝑘𝑖⁄ . The compact form of the 

equation can be written as  

𝑖𝑧 = 𝑊𝜙                                                                                      (4) 

where 𝑊 = [�̈� −𝑧] and 𝜙 = [𝑀 𝐶]𝑇. 

Table 1. Parameters of axial magnetic bearings system 

 Symbols Value Units 

Mass of the rotor 𝑚 4.821 [𝑚𝑚] 

Mass of the external disk element 𝑚𝑑 0.383 [𝑘𝑔] 

Nominal gap 𝑧0 0.25 [𝑚𝑚] 

Bias current 𝑖0 2.5 [𝐴] 

Number of turns in the 

electromagnets 
𝑁 24 [−] 

Surface area of the electromagnets 𝐴 419 [𝑚𝑚2] 

Magnetic permeability constant 𝜇0 4𝜋10−7 [𝐻 𝑚⁄ ] 

3. Design of the Controllers 

In the considered axial bearing-rotor system, the objective of the 

control is to force the disk to the middle position with equal gaps 

in both sides. To this aim, define a position tracking error 

𝑒(𝑡) ∈ ℜ and its double time derivatives, denoted by �̈�(𝑡) ∈ ℜ, as 

follows 

𝑒 = 𝑧𝑑 − 𝑧,  

�̈� = �̈�𝑑 − �̈� 
(1) 

where the desired trajectory of the rotor is 𝑧𝑑 = 0. The filtered 

tracking error 𝑟(𝑡) ∈ ℜ  and its time derivatives for the analysis, 

denoted by �̇�(𝑡) ∈ ℜ , as follows 

𝑟 = �̇� + 𝛼𝑒 

�̇� = �̈� + 𝑎�̇� 
(6) 

where, 𝛼 ∈ ℜ is a positive control gain. Take time derivative of 

filtered tracking error and multiplied by 𝑀 both side of the 

equation 

𝑀�̇� = 𝑀�̈� + 𝑀𝛼�̇� (7) 

Rearrange (7) by substituting (3), (5) and (6) into it as follows 

𝑀�̇� = 𝑀(�̈�𝑑 + 𝛼�̇�) − 𝐶𝑧 − 𝑖𝑧 (8) 

Rewrite equation (8) as follows 

𝑀�̇� = 𝑤(𝑡) − 𝑖𝑧 (9) 

Design the obtained controller; 

𝑖𝑧 = �̂�(𝑡) + 𝑘𝑟𝑟 + 𝑘𝑖 ∫ 𝑟𝑑𝑟 + 𝑉𝑅 (10) 

where �̂� is the best estimates function of the system parameters. 

The selection of 𝑉𝑅 defines the type of the controller. Note that 

the integral term is not consist on the variable structures 

controllers. However, experimental results have shown that the 

steady-state error occurs when levitating the rotor. Therefore, 

substituting the integral effect on control signal equation (10) 

more reliable results are obtained.  The aim of this study is to 

apply variable structure control in the selection of 𝑉𝑅 to have 

better robustness in the control system. 

3.1. Sliding mode controller (SMC) design 

Using equation (10), the first type controller input is defined as 

𝑖𝑧−𝑆𝑀𝐶 = �̂�(𝑡) + 𝑘𝑟𝑠𝑟 + 𝑘𝑖𝑠 ∫ 𝑟𝑑𝑟 + 𝜌𝑠𝑠𝑔𝑛(𝑟) (11) 

For the stability analysis, a candidate Lyapunov function (12) and 

its derivative (13) are defined as 

𝑉 =
1

2
𝑀𝑟2 +

1

2
𝑘𝑖𝑠𝜉2 (12) 

�̇� = 𝑀𝑟�̇� + 𝑘𝑖𝑠𝜉𝜉̇ (13) 

where 𝜉 = ∫ 𝑟𝑑𝑟 and the derivative of 𝜉̇ = 𝑟. The final form of 

derivative of 𝑉 is obtained by inserting equation (9) and (11) in to 

the equation (13) 

�̇� = 𝑀�̇�𝑟 + 𝑘𝑖𝑠𝜉̇ = (𝑤(𝑡) − �̂�(𝑡) − 𝑘𝑟𝑠𝑟 − 𝜌𝑠𝑠𝑔𝑛(𝑟)
− 𝑘𝑖𝑠𝜉)𝑟 + 𝑘𝑖𝑠𝑟𝜉 (14) 

Since 𝑠𝑔𝑛(𝑟) = (|𝑟| 𝑟⁄ ), and, �̃�(𝑡) = 𝑤(𝑡) − �̂�(𝑡) the equation 

(14) becomes; 

�̇� ≤ �̃�(𝑡)|𝑟| − 𝑘𝑟𝑠𝑟2 − 𝜌𝑠|𝑟| (15) 

Assume that there exists a 𝜌𝑠(𝑡) ∈ ℜ such that 𝜌𝑠(𝑡) ≥ ‖�̃�(𝑡)‖, 

the following upper bound can be formed; 
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�̇� ≤ 𝑘𝑟𝑠𝑟2 (16) 

Finally, the derivative of 𝑉 becomes 

𝑉 > 0
𝑉 ≤ 0̇ } 𝑉 ∈ 𝐿∞       →       lim

𝑡→∞
𝑉 = 𝑉∞ (17) 

It is clear that a global stability is maintained and all signals in 

the closed system are bounded. 

3.2. High gain robust (HGR) controller design 

The second type controller input is high gain robust controller 

defined as 

𝑖𝑧−𝐻𝐺𝑅 = �̂�(𝑡) + 𝑘𝑟𝑔𝑟 + 𝑘𝑖𝑔 ∫ 𝑟𝑑𝑟 +
𝜌𝑔

2

𝜀
𝑟 (18) 

where 𝜀 > 0 is a positive constant. For the stability analysis, the 

Lyapunov function given in equation (13) is used by replacing 

with the parameter 𝑘𝑖𝑔. The derivative of 𝑉 is obtained as by 

inserting equation (9) and (18) in to the equation (13) 

�̇� = (𝑤(𝑡) − �̂�(𝑡) − 𝑘𝑟𝑔𝑟 −
𝜌𝑔

2

𝜀
𝑟 − 𝑘𝑖𝑔𝜉) 𝑟 + 𝑘𝑖𝑔𝑟𝜉 (19) 

Assume that there exists a 𝜌𝑔(𝑡) ∈ ℜ  such that 𝜌𝑔(𝑡) ≥ ‖�̃�(𝑡)‖. 

And in equation (19) replace �̃�(𝑡) with 𝜌𝑔 and the following 

upper bound can be formed; 

�̇� ≤ −𝑘𝑟𝑔𝑟2 + 𝜌𝑔|𝑟| −
𝜌𝑔

2

𝜀
𝑟 (20) 

Rearranging equation (20); 

�̇� ≤ −𝑘𝑟𝑔𝑟2 + 𝜌𝑔𝑟 (1 −
𝜌𝑔|𝑟|

𝜀
) (21) 

Case-1: 

where   𝝆𝒈|𝒓| > 𝜺   →    𝟏 −
𝝆𝒈|𝒓|

𝜺
< 𝟎 

 

Case-2:  

where  𝝆𝒈|𝒓| ≤ 𝜺   →    𝟏 −
𝝆𝒈|𝒓|

𝜺
≥ 𝟎 

Under these cases the derivative of the candidate Lyapunov 

function is transformed into the two different types: 

 

From case-1: 

�̇� ≤ −𝑘𝑟𝑔𝑟2 (22) 

 

From case-2: 

�̇� ≤ −𝑘𝑟𝑔𝑟2 + 𝜀 (23) 

The worst case between case-1 and case-2, the derivative of the 

candidate Lyapunov function with the following upper bound can 

be formed; 

�̇� ≤ −𝑘𝑟𝑔𝑟2 + 𝜀 (24) 

therefore global ultimately upper bound stability is satisfied. 

3.3. High frequency robust (HFR) controller design 

The third type controller input is proposed as 

𝑖𝑧−𝐻𝐹𝑅 = �̂�(𝑡) + 𝑘𝑟𝑓𝑟 + 𝑘𝑖𝑓 ∫ 𝑟𝑑𝑟 +
𝜌𝑓

2𝑟

𝑟|𝜌𝑓| + 𝜀
 (25) 

Using the same candidate Lyapunov function for the stability 

analysis, the derivative of  𝑉is obtained by substituting equation 

(9) and (25) to the equation (13) 

�̇� = (𝑤(𝑡) − �̂�(𝑡) − 𝑘𝑟𝑓𝑟 −
𝜌𝑓

2𝑟

𝑟|𝜌𝑓| + 𝜀
− 𝑘𝑖𝑓𝜉) 𝑟 + 𝑘𝑖𝑓𝑟𝜉 (26) 

Assume that there exists a 𝜌𝑓(𝑡) ∈ ℜ such that 𝜌𝑓(𝑡) ≥ ‖�̃�(𝑡)‖. 

And in equation (26), replace the �̃�(𝑡) with the 𝜌𝑓 and the 

following upper bound can be formed; 

�̇� ≤ −𝑘𝑟𝑓𝑟2 + 𝜌𝑓|𝑟| (1 −
𝜌𝑓|𝑟|

𝑟|𝜌𝑓| + 𝜀
) (27) 

Rearrange the equation and the following upper bound can be 

formed; 

�̇� ≤ −𝑘𝑟𝑓𝑟2 + 𝜌𝑓|𝑟| (
𝜀

𝑟|𝜌𝑓| + 𝜀
) (28) 

where (𝜌_𝑓 |𝑟|)/(𝜌_𝑓 |𝑟| + 𝜀) ≤ 1; the derivative of 𝑉 becomes 

�̇� ≤ −𝑘𝑟𝑓𝑟2 + 𝜀 (29) 

 Figure 2. Flexible rotor active magnetic bearing experimental setup. 
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therefore global ultimately upper bound stability is satisfied. 

4. EXPERIMENTAL VERIFICATIONS 

 The flexible rotor-active magnetic bearing experimental setup 

used in the control design study is shown in Figure 2. The 

experimental setup is a five axis controlled rotor-active magnetic 

bearing system and the radial and the axial bearings can be 

controlled separately. The axial magnetic bearing is located at the 

one end of the rotor and limits the rotor axial movements. The air 

gap 𝑧0 between the rotor and the touchdown bearing is set to 0.15 

[mm].  

In experiments, the controller implementations and the data 

acquisitions were performed using dSPACE DS1104 system. The 

working sample rate was selected as 𝑇𝑠 = 15 𝑘𝐻𝑧 in all 

experiments. The best estimates of the system parameters were 

taken as 𝜑 = [𝑀 𝐶]𝑇 = [10000 0.3974]𝑇. In experimental 

verifications, two cases were studied to understand the 

performance and robustness of the designed robust variable 

structure controllers. In the first case, experiments were carried 

out with the own weight of the rotor in the system. For the second 

case, an external disk mass was mounted at the end of the rotor as 

shown in Figure 3. After adding the disk mass, the total mass of 

the rotor became 5.204 [kg] and the increase in the rotor mass 

was about 8% percent. Adding an extra mass on the rotor imposes 

some parametric uncertainty to the control system and also some 

dynamic unbalance forces in the rotation of the rotor even in the 

axial direction due to imbalances in the external disk. 

 

(a) 

 

(b) 

Figure 3. Axial magnetic bearing (a) rotor with external disk mass (b) 

rotor without external disk mass. 

4.1. Experimental Results of Variable Structure Controllers 

The variable structure controllers were tested at the rotor speed of 

3000 rpm for two cases and the displacement of the rotor and the 

control input were observed for each cases of with and without 

disk. The results obtained with the sliding mode controller are 

shown in Fig. 4. As shown in these figures, small increases were 

observed in the amplitude of displacement and the control input 

when the external disk attached to the rotor. The parameters of 

sliding mode controller for both case were selected as 𝑎𝑠 = 10, 

𝑘𝑟𝑠 = 1000, 𝜌𝑠 = 0.1 and 𝑘𝑖𝑠 = 450. 

The second results were obtained for the high gain robust 

controller as shown in Fig.5. For this controller, the parameters 

were selected as𝑎𝑔 = 20, 𝑘𝑟𝑔 = 900, 𝜌𝑔 = 0.0001, 𝜀𝑔 =

0.000001 and 𝑘𝑖𝑔 = 600. Although increase in the amplitudes of 

responses with external mass were reasonable, some phase shifts 

were observed in the displacements and control inputs. 

 

Figure 4. Sliding mode control results, (a) displacements, (b) control 

inputs. 

 

Figure 5. High gain robust control results, (a) displacements, (b) control 

inputs. 
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The high frequency robust control results were presented in 

Figure 6. In this controller, the parameters were  𝑎𝑓 = 25, 

𝑘𝑟𝑓 = 1000, 𝜌𝑓 = 0.001, 𝜀𝑓 = 0.000001 and 𝑘𝑖𝑓 = 500. Much 

better results were obtained in displacements and control inputs 

compared to other variable structure controllers as shown in 

Figure 6. 

 

Figure 6. High frequency robust control results (a) displacements, (b) 

control inputs. 

4.2. Comparison of Experimental Results 

The results of variable structure controllers were compared with 

the results of conventional PID control and linear 𝐻∞ robust 

controller. These controllers were tested before for the same rotor 

magnetic bearing system [16] and were belived to have good 

performances.  

 

Figure 7. PID control results (a) displacements, (b) control inputs. 

For the same test conditions and rotational speed of the rotor, the 

results obtained for PID control are shown in Figure 7. The 

robustness of PID control is weak againts the parameter variation. 

The results of linear 𝐻∞ controller were presented in Figure 8. 

Since 𝐻∞ controller was designed by considering some 

uncertainity models, small increases in the amplitude of the rotor 

were observed with the disk mass. 

 

Figure 8. 𝐻∞  control results, (a) displacements, (b) control inputs. 

 

Figure 9. All tested controller results with external disk mass, (a) 

displacements, (b) control inputs. 
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The experimental results of the all tested controllers with external 

disk mass were presented in Fig.9 and without disk given in 

Fig.10. Also Table 2 shows RMS values of obtained experimental 

data. It can be detected that high frequency robust controller 

gives best results either in the amplitude of the rotor and the 

control inputs. The other two variable structure controllers have 

also reasonable results.  The results of linear 𝐻∞ control shows 

the conservativeness of the controller with large control input 

values but almost no increase in the amplitude of displacements 

but some phase shifts were observed in the displacements and 

control inputs. 

 

Figure 10. All tested controller results without external disk mass, (a) 

displacements, (b) control inputs. 

5. Conclusions 

In this paper, three type of robust variable structure controllers 

have been designed and tested experimentally for a rotor-axial 

active magnetic bearing system. Robustness of the controllers 

were tested experimentally by creating some parametric 

uncertainty in the control system using an external disk mass 

attached to the rotor.  RMS values from the obtained data of the 

displacements and the control inputs have shown a good 

comparison of the controllers. The high frequency robust 

controller results have shown much better performance in all 

tested controllers.  
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 PID H∞ SMC HGR HFR 

Without  disk 
Displacement 0.0061 0.0049 0.0022 0.0017 0.0014 

Control input 1.1023 1.3765 1.1642 1.0131 0.9862 

With disk 
Displacement 0.0089 0.0050 0.0026 0.0025 0.0023 

Control input 1.2426 1.4200 1.1970 1.1788 1.1650 

 

 Table 2. RMS values for all experimental data. 


