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Abstract: Delta and Delta-Sigma modulation methods have been getting a great interest recently due to the great progress in analog-

digital very large scale integration technology. Since the outputs of these methods are digital, the data can be securely encrypted using 

very simple standard hardware. In this work, a chaotic random bit generator based approach for encrypting digital data of the delta and 

delta-sigma modulators is studied. The chaotic bit generation can easily be implemented in the digital hardware of the modulators due to 

simplicity of the chaotic dynamics.  The randomness of the generated chaotic bits are proved with visual and statistical tests. The security 

of the proposed approach is evaluated via key space estimation based attacks. The efficiency of the methods is validated with 

simulations. 
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1. Introduction 

The delta (Δ) and delta-sigma (ΔΣ) modulators offer simple, 

efficient methods for telecommunication and signal processing 

applications. The Δ modulation systems have gained significance 

in recent years due to their very simple hardware structure, digital 

transmission and easy to add adaptive features. In addition  ΔΣ 

modulators have noise shaping feature that makes them well-

suited for low-frequency, high-accuracy measurements. There are 

many applications of Δ modulators  including reliable voice 

communications, analog-to-digital signal conversion, performing 

audio delay lines, telemetry systems and feedback power control 

in code-division multiple-access radio communication systems 

[1]–[5]. The Δ modulation systems, a type of variable structure 

control, are also getting a special interest in the control 

community [6]–[10]. Other recent studies on Δ modulators have 

been focused on multibit modulation, chaotic modulation, 

chaotification and tone suppression in communications [11]–[17]. 

The digital output of the Δ modulation systems can be encrypted 

by using chaotic systems. Since chaotic dynamics have strong 

similarities with the cryptography, e.g. aperiodicity, deterministic 

dynamics, ergodicity and sensitivity to initial conditions,  they 

have recently been utilized in cryptosystems [18]–[23]. To 

encrypt the Δ modulation systems, while the required random bits 

can be generated from a hardware-based generator (e.g., using 

thermal noise [24] and radioactive decay [25]) or from software-

based generators (e.g., linear congruential generators [26]), 

chaotic systems are very simple to realize and offer a hybrid 

structure with the features of hardware and software based 

approaches [27]–[30]. The number of the chaotic systems have 

been increased over time  in the literature, which allows us to 

benefit from chaotic dynamics  for generating efficient chaotic 

random bits for use in  cryptographic applications [31]–[35]. 

In this work, a chaotic random bit generator is developed and 

integrated into the Δ and ΔΣ modulators for data encryption. The 

goal is to provide security in such systems during data 

transmissions. The Δ modulation systems offer low cost solutions 

with a strong immunity against crosstalk and noise in the 

transmission line, and integration of the chaos into these systems 

will enhance reliability and security. 

In the following sections, the delta modulation methods are 

overviewed and a chaotic map based encryption scheme is 

applied to digital outputs of the Δ and ΔΣ encoders. 

2. Chaotic Data Encryption For Δ And ΔΣ 
Modulation 

Chaotic systems are able to provide diffusion and confusion, i.e., 

hiding and spreading plaintext over the ciphertext, and for this 

reason have potential applications in some functional blocks of 

communication systems including encryption, modulation and 

compression. By considering a delta modulation scheme, the 

chaotic random bits can easily be used for encrypting digital 

plaintext for secure communications. Figure 1 shows a chaos 

based digital data encryption and decryption approach for Δ 

modulators.  

 

 
Figure 1.  Chaos based encryption for delta modulation system 

 

Similarly, the chaotic bits can also be incorporated into digital 

output of the ΔΣ modulator and demodulator systems for securing 

the data as illustrated in Figure 2. In data encryption the 

exclusive-or (XOR) logical function is used. The Δ modulated 

signals are easily demodulated at the receiver by using a low pass 

filter, but now with the chaotic encryption, it is not possible to 

extract message without correct chaotic decrypter with correct 

initial conditions and parameter values. 

It is interesting to note that many applications have statistically 

smaller amplitudes at higher frequencies, e.g. voice 

communications,  an integrator time constant of around 1ms is 

satisfactorily reproduce voice in a 3kHz bandwidth [3]. Hence, 

applications of delta modulation include telecommunications, 

secure communications, audio delay lines and voice input/output 

in data processing. The delta modulation systems offer simple, 

robust and low cost solutions for such applications. 
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Figure 2.  Chaos based encryption for delta-sigma modulation system 

 

2.1. Δ and ΔΣ Modulators 

Today, digital techniques are dominating signal processing. The 

Δ modulation systems have an important place in the digital 

signal processing area with simple, efficient solutions. For 

example the ΔΣ analog-to-digital converters are ideal for many 

applications whose signal frequencies vary from dc to several 

hundred megahertz. These approaches are composed of an 

oversampling modulator followed by a digital filter that together 

generates a high-resolution digital data streams. Typically, a Δ 

modulator with one bit quantization requires a resolution on the 

order of 14–20 bits (e.g., around 100 kbit/s for a voice bandwidth 

of 4 kHz). The main working principle of the Δ modulator is 

illustrated in Figure 3.  The modulator is simply a sampled data 

system employing a negative feedback loop via integration. A 

one-bit quantizer (or comparator) senses if the instantaneous level 

of the analog input is greater or less than the feedback signal and 

produces a continuous non-return-to-zero digital data stream. The 

negative feedback loop integrates the digital data to form an 

approximation of the input signal. It is also quite simple to 

demodulate the input signal by using an identical integrator and a 

low pass filter (LPF). The ΔΣ modulator has a simpler structure at 

the demodulator by having only a low pass filter. 

By considering Figure 1, the equations of the delta modulator are 

given by 

 

( ) ( ) sign( ( ))x t u t x t    (1) 

 

where 𝑢(𝑡) is the input signal, 𝑛(𝑡) is the integrator output, 𝑥(𝑡) 

is the error signal and  the quantization level is given by ±𝛿. The 

sign(.) function is defined by sign(𝑥) = 1 if 𝑥 ≥ 0, and 

sign(𝑥) = −1 if 𝑥 < 0. In order to make the Δ modulator 

function correctly, the error must be forced to zero in finite time 

by the feedback signal. To find stability conditions of the Δ 

modulator, if we define a positive definite Lyapunov function as 

 
2 / 2L x   (2) 

 

Then, the time-derivative of (2) can be written as 

 

   sign( )L xx x u x u x         (3) 

 

Thus, the modulator is stable if the following condition holds 

 

max ( )u t   (4) 

 

The equivalent condition for the discrete-time (sampling) 

implementations is given by 

 

max ( )sf u t    (5) 

 

where 𝑓𝑠 is the sampling frequency. Equation (5) shows that the Δ 

modulator produces a binary coded output from the time-

derivative of the analog input signal.  

For ΔΣ modulators seen in Figure 2, since the input signal first 

passes through an integrator, then the governing equation can be 

written as 

 

( ) ( ) sign( ( ))x t u t x t    (6) 

 

Similar to (2), if the Lyapunov stability is applied, one can easily 

obtain the following stability condition 

 

max ( )sf u t   (7) 

 

Therefore, the ΔΣ modulators have noise suppression advantage 

compared to Δ modulators because the quantization level is 

proportional to the amplitude of the input signal (while 𝛿 is 

proportional to the derivative of the input signal in Δ modulators). 

This noise-shaping feature of the  ΔΣ modulators is well suited to 

signal processing applications, e.g. communication and digital 

audio. 

 

   

Figure 3.  Delta modulation technique 

 
The input message signal is oversampled in the Δ and ΔΣ 

modulations in order to increase correlation between samples as 

illustrated in Figure 3. For this reason there are two types of 

quantization errors: the slope overload distortion (too small 𝛿 or 

sampling) and granular noise (too large 𝛿 or sampling).  The 

integrator with a fixed slope may not track the large and high 

frequency signals, which can cause the slope overload distortion 

as a critical drawback of the system. The slope overload 

distortion is eliminated if the condition (5) or (7) is satisfied for 

the related modulator type. There exist adaptive algorithms for 

adjusting quantization step size to eliminate quantization errors of 

the Δ modulator systems. On the other hand, the performance of 

these modulators is dependent on the quantization and channel 

noise. The quantization noise averages to zero and can be defined 

by its root mean square (rms) value for a dynamic input signal by 

considering its limits ±𝛿/2. Thus, the quantization error 𝑥(𝑡) is 

given by   
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The noise level is equal to quantization noise of an analog-to-

digital converter. For rms value of the input signal 𝑢(𝑡), the 

signal-to-noise ratio (dB) can be given by  

 

SNR( ) 20log 20log 12rms rms

rms

u u
dB

x 

   
    

  
  (9) 

 

These results are valid only for uniformly distributed quantization 

noise and the effect of the slope overload distortion is ignored. 

The quantization noise remains the same at the demodulator. 

2.2. Chaotic Random Bit Generation 

Many chaotic systems are available in the literature to serve as a 

source for chaotic random bit generations for use in 

encryption/decryption algorithms. For such applications both 
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continuous-time and discrete-time chaotic systems can be 

utilized, but the discrete maps are preferred because of their 

convenience for digital realizations and superior performances. 

To acquire random bits in a fast, simple way, the robust chaotic 

maps can be used since they do not have any periodic windows in 

a large parameter range of the chaotic behaviour. Robust chaotic 

maps are defined with piecewise linear and discontinuous maps 

whose Lyapunov exponents are positive throughout the chaotic 

parameter range [36]. In addition these maps are able to provide 

statistically uniformly distributed random numbers, which is 

critical to generated random bits without performing any de-

skewing method. Consider a symmetric tent map described by 

 

1 1i i      (10) 

  

where 𝜂 = 1.9999. To show the existence of chaos in the system 

for 1 < 𝜂 ≤ 2, the Lyapunov exponent and bifurcation diagram 

of the system are given in Figure 4 for 𝜂 versus 𝜃𝑖 . The map has a 

positive Lyapunov exponent (LE) when  𝜂 > 1 with a maximum 

value 0.672. The bifurcation diagram shows that the map has 

chaos without any periodic windows for a wide range of 

parameter variations. The map exhibits a robust chaos since the 

Lyapunov exponent is always positive in the chaotic region. 

Even though, statistical tests are not enough to determine the 

quality of the randomness, they are needed to get an idea. The 

randomness features of (10) can be evaluated with the visual and 

test statistics based methods. Visualization is a quick way to get 

rough information about the chaotic random sequences. The 

bifurcation diagram and the histogram plot are used for visual 

evaluations. Figure 5 displays a histogram plot of the chaotic map 

for 100 categories. The histogram plot shows a uniform 

distribution over the ±1 range. This means that the chaotic map 

with the selected parameter value generates a uniformly 

distributed random sequence. 

 

 
Figure 4.  Bifurcation diagram and Lyapunov exponent. 

 

 

  
Figure 5.  Histogram plot. 

 

Now, since we verify that the chaotic map provides uniformly 

distributed random numbers, we can generate bits (or binary 

sequences) from this chaotic map by using a simple comparator 

defined by 

 

1 , 0

0 , 0

i

i

i

h





 


 (11) 

 

The usage of a comparator is a simple, efficient and convenient 

way to generate binary values from the chaotic source [37]. The 

chaotic random bits should also be evaluated with some 

qualitative statistical tests to confirm that the generated random 

bits are unbiased, uncorrelated random bits. To assess the 

randomness of the generated random bits, many statistical tests 

are available in the literature including monobit, serial, 

overlapping template matching, cumulative sum, poker, 

autocorrelation, runs, discrete Fourier transform (spectral) and 

frequency within a block (or block frequency) tests [38]–[40]. 

These tests are used to determine whether the chaotic random bits 

are unbiased and uncorrelated. That is to say, the chaotic random 

bits ℎ𝑖 with security bound S bits should  include unbiased bits 

(probability of 0 and 1 must be equal) and undistinguished bits 

without performing at least 2𝑆 operations [41]. Even though the 

statistical tests alone are not enough for such evaluations, it is 

nice to see that the chaotic bits pass all these statistical tests. Note 

that for practical applications, application specific tests are 

usually carried out for randomness analysis. The statistical test 

results are given in Table 1. It is clear that all tests are 

successfully passed, and for this reason, the robust chaotic map 

(10) with the binary converter algorithm (11) produces a highly-

satisfactory random bits for use in cryptosystems. 

 

Table 1. Statistical evaluation of the chaotic random bits 

Test Name Test Values Statistics Result 

Monobit 𝑞 < 3.8415 1x10-6 success 

Block frequency 𝑞 > 0.01 0.886 success 

Runs  𝑞 > 0.01 0.785 success 

Fourier transform 𝑞 > 0.01 0.939 success 

Autocorrelation |𝑞| < 1.96 -1.0135 success 

Serial  𝑞 < 0.01 1x10-8 success 

Overlapping 𝑞 > 0.01 0.998 success 

Cumulative sums 𝑞 > 0.01 0.4354 success 

Poker 𝑞 < 14.067 9.136 success 

 

3. Simulation Results 

The Matlab/Simulink based numerical simulation results are 

given in Figures 6-7. Figure 6 shows the chaotic data encryption 

in Δ modulator based data transmission results. The message 

signal which includes ASCII codes of “chaos” is seen in Figure 

6a. The digital output of the Δ modulator is displayed in Figure 

6b, where there are some windows in the modulated signal. This 

digital signal can easily be demodulated with an integrator and 

low-pass filter. To encrypt the modulator output bits, the XOR 

logic function is used for the chaotic bit sequence and the 

modulator bits, namely, 

 

i i iw v h   (12) 

 

Figure 6c shows the encrypted modulator output bits, which does 

not have any visual pattern. The same chaotic bit generator is 

used in the demodulator to decrypt the original modulator output 

bits and then Δ demodulator is employed to extract the original 

message signal. The recovered message signal is seen in Figure 

6d. which shows a perfect recovery. The security of the scheme is 

tested with the use of Δ demodulator, low pass filtering and 

estimated key sequence based tests. In Figure 6e, the test result 
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for a wrong chaotic key sequence is illustrated. In this test, the 

same chaotic map and binary convertor algorithm is used. The 

initial condition of this eavesdropping system is assumed to be 

estimated with a very small initial condition error, e.g., 𝛾 = 𝜃0 −
𝜃0

′ = 1x10−7, and it is seen in Fig. 6e that the message cannot be 

recovered. The chaotic maps in the transmitter and receiver must 

be exactly the same with the same parameters and initial 

conditions to generate the correct key sequence and to decrypt the 

correct message. 

 

 

 

 

Figure 6.  (a) Message bits. (b) Digital delta modulator output. (c) 

Chaotic bits based encrypted message (transmitted bits). (d) Recovered 
message bits. (e) Recovered message bits for a wrong chaotic key 

sequence. 

 
Similarly, the numerical simulation results for the ΔΣ modulator 

based data transmission are given in Figure 7. The waveform of 

the first-order ΔΣ modulator is illustrated in Figure 7b when the 

input signal is a sinusoid as given in Figure 7a. It is should be 

noted that the modulator performs both the sampling and the 

quantization operation in this example, which is typical in 

practical circuit implementations. The ΔΣ modulator output 

shows that the output is either plus or minus full scale and when 

the sinusoidal input to the modulator is close to the full scale, the 

output is either positive or negative during the cycle. It is seen 

that the local average of the modulator output follows the input 

signal. When the input signal is around zero, the modulator 

output changes fast between ±𝛿 with nearly zero mean. 

Therefore, the input signal can easily be recovered by using a low 

pass filter as demodulator. On the other hand, the chaotic bits 

based encryption of the modulator output removes all the 

modulator patterns as seen in Figure 7c. The recovered input 

signal is seen in Figure 7d. which shows an excellent recovery. 

To evaluate security of the approach, the test result for a wrong 

chaotic key sequence is shown in Figure 7e. In this test, the same 

chaotic map and binary convertor algorithm is used  with a very 

small initial condition error, e.g., 𝛾 = 𝜃0 − 𝜃0
′ = 1x10−7. It is 

clear from Figure 7e that the message cannot be recovered with 

such a very small estimation error. 

 

 

 

 

Figure 7.  (a) Message signal. (b) Delta-sigma modulator output. (c) 
Transmitted bits. (d) Recovered message signal. (e) Recovered message 

bits for a wrong chaotic key sequence. 

 

4. Conclusion 

A chaotic random bit generator based data encryption scheme is 

designed for digital transmission through delta and delta-sigma 

modulators. The practically proven technology of the delta 

modulation systems are used in many signal processing and 

communication applications with the developments in mixed 

signal integrated circuits. The implementation of the chaotic 

encryption is able to provide security for such systems. The 

approach allows us to benefit from the advantages of the delta 

modulation techniques and chaos theory. The randomness of the 

robust chaotic map based random bits are evaluated with  

qualitative statistical tests. The security of the delta modulation 

systems under chaotic encryption is tested with low pass filtering 

and key space estimation based attacks, and it is shown that the 

methods are highly secure and reliable. The use of chaos in 

securing delta modulation approaches provides a good option to 

be considered as a framework for the next generation 

communication and data transmission systems. 
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