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Abstract: Conventional data driven process monitoring algorithms are limited to Gaussian process data for principal component analysis 

(PCA) algorithm and non-Gaussian process data for independent component analysis (ICA) algorithm. This paper provides a comparison 

study between the conventional data driven methods and support vector data description (SVDD) algorithm for fault detection (FD). 

Different from the traditional methods, SVDD algorithm has no Gausssian assumption. Thus the distribution of process data is not important 

for SVDD method. In order to compare their FD performances of the proposed methods from the application viewpoint, Tennessee Eastman 

(TE) benchmark process is utilized to compare the results of all the discussed methods. Simulation results on TE process show that ICA 

and SVDD methods perform better for false faults than the PCA method. 

Keywords: Process Monitoring, Fault Detection, Support Vector Data Description, Independent Component Analysis, Principal 

Component Analysis, Statistical Process Control. 

 

1. Introduction 

In statistical process control (SPC) systems there exist many 

variables need to be monitored. These measurements provide 

useful information about the status of the systems. So applying the 

univariate SPC methods on that systems may produce false alarms. 

Using multivariate SPC (MSPC) methods can overcome that 

problem. MSPC has several advantages over univariates, for 

example, showing relationships between variables which cannot be 

detected with univariate statistics, and help to understand the 

interaction between variables. PCA and ICA algorithms have been 

widely used as a multivariate statistic intended to find latent 

variables in the FD field [1-6]. 

PCA is a well-known algorithm, and depends only on the second 

order statistics which means that the latent variables capture the 

most variance of the source signals. Unlike PCA, the goal of ICA 

algorithms is to minimize the statistical dependence between the 

basis vectors, and there is no closed form expression for ICA 

algorithms.  

Another efficient FD algorithm is SVDD algorithm proposed by 

Tax and Duin [7]. SVDD algorithm aims at finding spherically 

shaped boundary around a data set. In this boundary, a hypersphere 

enclosing most of the data set belonging to the class of interest and 

rejecting the outliers. SVDD is a new method in the FD area, but it 

has been used in a wide range of FD applications [8-10]. In this 

paper, it is employed the one-class SVDD to find the separating 

boundary the normal data set and faulty data set. In this respect, 

SVDD is implemented and compared with standard MSPC 

methods for FD. 

The remainder of this paper is organized as follows. Section II 

describes PCA and ICA algorithms. How to obtain SVDD 

algorithm is given in section III. Section IV gives monitoring 

results of the application to TE process. Finally, section V provides 

a concluding summary of this paper. 
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2. Process Monitoring Based on PCA and ICA 

The basic model considered in PCA and ICA is  

𝒙 = 𝑨𝒔 (1) 

where 𝒔 = [𝑠1, … , 𝑠𝑑]𝑻is a vector of unknown source signals 

which are independent,  and 𝒙 is obsevation vector which is 

mixtures of the source signals via unknown mixing matrix 

𝑨. The objective of PCA is to make variables uncorrelated 

through orthogonal rotation. The orthogonal rotation matrix 

is obtained by using eigenvalue decomposition on 

covariance matrix 
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𝚺 =
𝑿𝑻𝑿

𝑚 − 1
= 𝑽𝚲𝑽𝑻 

(2) 

where 𝚲 is the diagonal eigenvalue matrix with its diagonal 

elements in decreasing order, 𝑽 is orthogonal eigenvector 

matrix . The loading matrix 𝑷 is formed by a first vector 

which  possesses acceptable percent of data variance. The 

transformation of 𝑿 matrix is called as the score matrix and 

calculated as follows 

  𝑻 = 𝑿𝑷 (3) 

The transformation into the original space is achieved by 

using (3) 

  �̂� = 𝑻𝑷𝑻 (4) 

The residual matrix 𝑬 is calculated as 

  𝑬 = 𝑿 − �̂� = 𝑿 − 𝑻𝑷𝑻 (5) 

PCA algorithm divides data space into two parts. First part  

is determined by a first major component and has the 

greatest data variance. The other part is defined by a small 

percentage of  data variance and shows noise. 𝑇2 statistic 

can be used to measure the variation of  PCA  model for a 

loading vector. 

  𝑇2 = 𝒙𝑻𝑽𝚲𝒂
−𝟏𝑽𝑻𝒙 (6) 

where 𝚲𝒂 is the first a rows and columns of 𝚲. In PCA the 𝑿 

data is assumed to follow a multivariate normal distribution 

so 𝑇2 follows an F distribution with degrees of freedom 𝐴 

and 𝐴 − 𝑀, and confidence limits can be calculated as 

follows 

T𝛼
2 =

𝐴(𝑀2 − 1)

𝑀(𝑀 − 𝐴)
𝐹𝐴,𝑀−𝐴,𝛼 

(7) 

Squared Prediction Error (SPE) statistic measures the 

average size of the residuals corresponding to the lowest 

𝑑 − 𝑎 eigenvalues 

𝑆𝑃𝐸 = 𝒙(𝑰 − 𝑷𝑷𝑻)𝒙𝑻 (8) 

The confidence limit of SPE statistic is defined as 

𝑆𝑃𝐸𝛼 = 𝜃1 (
ℎ𝑜𝑐𝛼√2𝜃2

𝜃1

+ 1 +
𝜃2ℎ𝑜(ℎ𝑜 − 1)

𝜃1
2 )

1
ℎ𝑜

 

 

(9) 

with 

𝜃𝑖 = ∑ 𝜆𝑗
𝑖

𝑚

𝑗=𝑎+1

 
(10) 

ℎ𝑜 = 1 −
2𝜃1𝜃3

3𝜃2
2  

(11) 

where 𝑐𝛼 is the value of normal distribution with  𝛼 level of 

significance. 

ICA tries to estimate source signals without knowing 𝑨 and 

𝒔. In order to achieve that, Hyvarinen introduced a fast-fixed 

point algorithm (FastICA) [11]. In FastICA, Negentropy 

method is used to measure statistical independency. The 

negentropy is defined as 𝑱(𝒚) = 𝑯(𝒚𝒈𝒂𝒖𝒔𝒔) − 𝑯(𝒚), which 

can be approximated by 

𝑱(𝒚) = [𝑬{𝑮(𝒚)} − 𝑬{𝑮(𝒚𝒈𝒂𝒖𝒔𝒔)}]
𝟐
 (12) 

where 𝑮(𝒚) is the nonquadratic function [12]. The FastICA 

algorithm is stated as follows 

 

1. Choose an initial weight vector 𝒘 of unit norm. 

2. Update 𝒘 ← 𝑬{𝒛𝒈(𝒘𝑻𝒛)} − 𝑬{�́�(𝒘𝑻𝒛)}𝒘, where 
𝒈(𝒚) = 𝒕𝒂𝒏𝒉(𝒂𝟏𝒚) 

3. Normalize 𝒘 ← 𝒘
‖𝒘‖⁄ . 

4. If not converged, go back to step 2.   

 

Separating matrix W is obtained by assembling all the vector 

w, and the demixing sources are calculated as 

�̂� = 𝑾𝒙 (13) 

After obtaining W, it is divided into two parts, dominant part 
(𝑾𝒅), excluded part (𝑾𝒆), and using these parts three 

statistics are calculated as follows 

𝐼2 = �̂�𝒅
𝑻�̂�𝒅 = 𝒙𝑻𝑾𝒅

𝑻𝑾𝒅𝒙 (14) 

𝐼𝑒
2 = �̂�𝒆

𝑻�̂�𝒆 = 𝒙𝑻𝑾𝒆
𝑻𝑾𝒆𝒙 (15) 

𝑆𝑃𝐸 = (𝒙 − �̂�)𝑻(𝒙 − �̂�) (16) 

where �̂� = (𝚲−𝟎.𝟓𝑽𝑻)
−𝟏

𝑩𝒅𝑾𝒅𝒙. In ICA, the latent variables 

are assumed to be non-Gaussian distributed, hence the 

confidence limits of tree statistics are calculated by kernel 

density estimation method [13]. 

3. Process Monitoring Based on SVDD 

The SVDD is a new method in the FD that constructs a 

univariate monitoring statistics for variables [14]. The aim 

of SVDD is to transform original variables into a high 

dimensional feature space by using kernel. The transformed 

variables fall into a minimal sphere of radius R [7]: 

min
𝑅,𝒂,𝜀

𝑅2 + 𝐶 ∑ 𝜀𝑖  𝑠. 𝑡. ‖𝜙(�̂�𝒊) − 𝒂‖2 ≤ 𝑅2 + 𝜀𝑖

𝑛

𝑖=1

   

  𝜀𝑖 ≥ 0   ∀1 ≤ 𝑖 ≤ 𝑛 

 
(17) 

where a is the center of hypersphere, C is the trade off 

between the volume of the hypersphere and the number of 

transformed samples outside the hypersphere, and 𝜀𝑖 is slack 

variable. The   a and R are obtained as follows 

𝒂 = ∑ 𝛼𝑖𝜙(�̂�𝒊)

𝑛

𝑖=1

  ,   
(18) 

𝑅 = √𝐾(�̂�𝒑, �̂�𝒑) − 2 ∑ 𝛼𝑖𝐾(�̂�𝒑, �̂�𝒊) +

𝑛

𝑖=1

∑ ∑ 𝛼𝑖𝛼𝑗𝐾(�̂�𝒊, �̂�𝒋)

𝑛

𝑗=1

𝑛

𝑖=1

 

(19) 

where the sample points �̂�𝒑 is support vector. Using (17), 

the univariate monitoring statistic is calculated as 

𝑑2(𝜙(�̂�𝒊)) = ‖𝜙(�̂�𝒊) − 𝒂‖2 (20) 
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If the square distance 𝑑2(𝜙(�̂�𝒊)) = ‖𝜙(�̂�𝒊) − 𝒂‖2 ≤ 𝑅2, 

sample is accepted as a normal sample. The decision based 

on SVDD can be precisely described as 

𝑑2(𝜙(�̂�𝒊)) = 𝐾(�̂�, �̂�) − 2 ∑ 𝛼𝑖𝐾(�̂�𝒊, �̂�) +

𝑛

𝑖=1

∑ ∑ 𝛼𝑖𝛼𝑗𝐾(�̂�𝒊, �̂�𝒋)

𝑛

𝑗=1

𝑛

𝑖=1

≤ 𝑅2 

                                                                                          
(21) 

4. Comparision Study Based on TE 

4.1. Applications for Determination of Disease Risk 

In this section PCA, ICA and SVDD methods will be 

applied to TE process for a comparison study. TE simulator 

was developed by Downs and Vogel which produces two 

products from four reactants [15]. It has five major units, i.e. 

reactor, condenser, compressor, separator, and stripper. 

There are 41 measured variables and 12 manipulated 

variables. In TE process, 20 process faults and an additional 

valve faults were defined by Downs and Vogel [15]. The 

sample length of the training data set is 500 under normal 

operating conditions. Each testing data set for one fault 

mode consist of 960 samples, and fault was introduced at 

sample 160 for each data set. All the data were autoscaled 

prior to application of the algorithms. To obtain better effect 

of simulation, 52 variables are selected for analysis. The 

confidence limit of kernel density estimation is selected as 

99%. Fault detection rate (FDR) and false alarm rate (FAR) 

are considered to evaluate FD performance [16,17]. FDR 

and FAR rates are defined as 

𝐹𝐷𝑅 = No.  of samples (𝐽 > 𝐽𝑡ℎ|𝑓 ≠ 0) (22) 

𝐹𝐴𝑅 = No.  of samples (𝐽 > 𝐽𝑡ℎ|𝑓 = 0) (23) 

If one of the test statistics exceeds threshold, a fault can 

be detected successfully. The FD performances of the 

methods are investigated for 11 typical fault modes in 

TE process, and the results are calculated and tabled in 

Table I. Also, in Table 1 the fault types and fault modes 

can be seen. As it can be seen in Table 1, FDRs are 

almost close each other. For fault 15 all algorithms show 

poor FD performance. FARs for fault 6 is very low for 

FastICA and SVDD in Table II. 

According to FARs given in Table II, PCA has higher 

FARs than FastICA and SVDD, which means PCA 

produces more false alarms than the others. For fault 12 

they have almost the same FARs, but for fault 8 only 

FastICA approach gives the best FAR. 

In this paper, PCA, ICA and SVDD methods have been 

introduced, which was based on linear (PCA, ICA) and 

nonlinear process monitoring techniques (SVDD). 

Then, all the methods were implemented on TE process 

to compare the sensivity of the algorithms quantified by 

calculating the FARS. 
 

 

 

 

 

 

 

Table 1. Description of process faults, and FDRs of algorithms 

Fault 

Mode 

ALGO-

RITHMS 

Fault Detection Rate 

(FDR) 

Fault 

Type 

SVDD SPE T2-I Ie 

 

1 

PCA  800 796    

Step FastICA  797 796 797 

SVDD 798      

 

2 

PCA  798 790    

Step FastICA  789 747 789 

SVDD 789    

 

4 

PCA  800 675    

Step FastICA  755 21 724 

SVDD 781      

 

6 

PCA  800 796    

Step FastICA  800 800 800 

SVDD 800     

 

7 

PCA  800 800    

Step FastICA  800 326 800 

SVDD 800      

 

8 

PCA  787 785   Random 

Variation FastICA  791 725 795 

SVDD 796      

 

12 

PCA  790 794   Random 

Variation FastICA  800 790 797 

SVDD 798      

 

13 

PCA  772 766   Slow 

Drift FastICA  767 747 765 

SVDD 769     

 

14 

PCA  798 800    

Sticking FastICA  800 722 800 

SVDD 800      

 

15 

PCA  247 176    

Sticking FastICA  185 7 180 

SVDD 242      

 

18 

PCA  745 728    

Unknown FastICA  736 713 735 

SVDD 742    
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Table 2. Description of FARs 

 

5. Conclusion 

According to Table I, all the tested methods give similar 

FDRs but different FARs (Table II). However FARs of ICA 

and SVDD have almost the same, and are lower than PCA. 

Therefore, ICA and SVDD algorithms can be preferred to 

PCA to obtain lower FARs, and may provide the process 

operator with more reliable information. The drawback of 

the ICA algorithm is that using the kernel density estimation 

method is computationally expensive. Unlike the ICA, 

SVDD does not suffer from a high computational load, so 

using SVDD is more appropriate for FD applications. 
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Fault 

Mode 

ALGO-

RITHMS 

False Alarm Rate 

(FAR) 

SVDD SPE T2-I Ie 

 

1 

PCA  29 15   

FastICA  3 0 3 

SVDD 7     

 

2 

PCA  33 11   

FastICA  2 0 3 

SVDD 4     

 

4 

PCA  31 16   

FastICA  5 1 3 

SVDD 6      

 

6 

PCA  25 3   

FastICA  0 0 0 

SVDD 1      

 

7 

PCA  26 5   

FastICA  0 0 2 

SVDD 6      

 

8 

PCA  33 11   

FastICA  5 2 10 

SVDD 27      

 

12 

PCA  32 12   

FastICA  29 0 30 

SVDD 36      

 

13 

PCA  30 7   

FastICA  3 0 3 

SVDD 3       

 

14 

PCA  34 15   

FastICA  3 1 2 

SVDD 7      

 

15 

PCA  29 10   

FastICA  1 0 0 

SVDD 3      

 

18 

PCA  39 13   

FastICA  1 0 1 

SVDD 8    


