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Abstract: Energy harvesting from the surrounding environment has been a superior way of eliminating the burden of having to replace 

depleted batteries in wireless sensor networks (WSNs), thereby achieving a perpetual lifetime. However, the ambient energy is highly time-

variable and depends on the environmental conditions, which raises the need to design new approaches for predicting future energy 

availability. This paper presents a performance evaluation and comparison of three recently-proposed solar energy prediction algorithms 

for WSNs. In order to provide an accurate performance of the algorithms, real-world measurements obtained from a solar panel were 

considered. Also, the performance characteristics of the algorithms in four seasons –winter, spring, summer and autumn – were 

demonstrated. To do this, a month in each season was selected for performance comparison, discussing the performance of the algorithms 

in each season. 

Keywords: Wireless sensor networks, Energy harvesting, Solar energy.  

1. Introduction 

Wireless sensor networks (WSNs) are composed of a collection of 
sensor nodes designed to perform a common duty and which have 
the tasks of sensing, processing and communicating data, aiming to 
deliver it to a remotely-located central point [1]. The sensor nodes 
are often powered by limited-energy sources, typically small 
batteries. This makes energy efficiency a vital criterion in the 
development of WSNs, so the main emphasis has been placed on 
prolonging the lifetime of WSNs. A sensor node is equipped with 
four components as depicted in Fig. 1: (1) a sensing unit to detect 
environmental data such as temperature; (2) a micro-processor to 
process the data; (3) a radio for communication between the sensor 
nodes; and (4) an energy unit to supply energy to all the 
components. It is well-understood that data communication in a 
sensor node consumes the most energy. Therefore, communication 
between the sensor nodes has to be managed in an efficient manner. 
To control the transmission medium in a WSN effectively, medium 
access control (MAC) protocols are developed to reduce the energy 
consumption due to inefficient data communication (for example, 
by collision). There are huge numbers of MAC protocols 
specifically proposed for WSNs which minimize energy wastage as 
well as enhancing the channel performance (for example, 
throughput, delay and fairness) [2, 3]. However, such a WSN 
system will eventually fail to operate because of the limited energy 
supply.  
In order to handle the inevitable energy depletion in WSNs, energy 
harvesting (EH) from the environment is an alternative technique to 
ensure an unlimited energy source. In this technique, each sensor 
node can harvest energy continuously from its surrounding 
environment through an EH device. The main purpose is to extract 
the environmental energy and convert it into electricity to power 
sensor nodes. The major sources of existing environmental energy 
for WSNs are solar, wind, vibration and thermal. In order to enable 
sensor nodes to benefit from EH technology, a new type of sensor 
node equipped with an EH unit has been developed to perpetuate 
the lifetime of WSNs [4]. Fig. 2 presents an example architecture of 

an EH sensor node with the sun as the energy source, a solar panel 
to produce energy from the sun, and a super-capacitor to store the 
harvested energy.  
 

 

 

 

 

 

            

Figure 1. A sensor node architecture with real hardware. 

EH sensor nodes potentially provide a perpetual lifetime by 
exploiting the ambient energy. It should therefore be noted that the 
fundamentals of MAC protocols that will be developed for energy 
harvesting WSNs (EH-WSNs) will be re-considered to mitigate the 
uncertainty of amount of ambient energy over time. This is because 
ambient energy is highly dependent on environmental conditions 
and is time-variable. The ambient energy can be harvested using 
varying ratios at different time slots of a particular day. The main 
task of new MAC protocols is to maintain the performance of a 
network at an acceptable ratio with respect to the changing available 
rate of energy to be harvested. Currently, the design of MAC 
protocols for EH-WSNs is a fiercely-debated topic and an on-going 
research area. A number of MAC protocols proposed for EH-WSNs 
have been surveyed in detail in [5]. This survey explicitly highlights 
that existing MAC protocols should comfortably meet the energy 
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neutral operation (ENO) condition in which the amount of energy 
generated must always be greater than the energy consumed within 
a particular time duration. The nodes which satisfy the ENO 
condition are assumed to operate perennially. In these protocols, a 
node is allowed to start transmission as long as it stores sufficient 
power in its battery.   

 

Figure. 2 EH sensor node architecture with real hardware. 

Many of the current MAC protocols do not consider future energy 
availability as they only consider current residual energy level as 
discussed above. The future energy level, however, may change 
dramatically resulting in some nodes facing temporary energy 
shortages. This can cause significant problems, such as some 
important information might be transmitted very late or get lost. 
Therefore, future MAC protocols should arrange the transmission 
policies based on the energy generation ratio [6]. Careful prediction 
of future energy levels opens a new perspective [7].  
The aim of this paper is to study the solar energy prediction 
algorithms proposed for EH-WSNs, focusing particularly on the 
performance of the algorithms using real measurements. Solar 
energy was chosen for this study as it is the most appropriate energy 
source for EH-WSNs due to its high energy density. We selected 
three recent prediction algorithms: the exponentially-weighted 
moving average (EWMA) [8], the accurate solar energy allocation 
(ASEA) [9] and the weather-conditioned moving average (WCMA) 
[10]. These approaches had been previously tested in short-term 
scenarios (a few days) in which the actual performance of the 
approaches may not have been reflected. To avoid this, we obtained 
real measurements from [11] for the second month of each season 
in 2015. Also, the basic operations of the approaches will be 
described in detail in the following section. It is believed that this 
study will provide an insight into future research directions in the 
relevant area.  

2. Solar Energy Prediction Approaches  

2.1. Exponentially-Weighted Moving Average  

The exponentially-weighted moving average (EWMA) is the main 
approach which has inspired the design of many prediction 
algorithms in the literature. The fundamental aim of EWMA is to 
benefit from the daily cycle in solar energy by adapting to seasonal 
variations. The 24-hour day is divided into slots of equal length, 
such as 24 one-hour slots. The energy in each slot is predicted 
based on an exponentially increasing/decreasing rule given by Eq. 
(1). EWMA uses historical information of the energy generation 
pattern. For this purpose, the last amount of harvested energy (R) 
and estimated energy (E) by EWMA are summed with a weighting 
factor, 0<α<1, arranging the importance of the R and E.  A high 
value of α corresponds to less importance of the last-harvested 
energy and vice versa.  

           E(d, n) = α E(d-1, n) + (1 – α) R(d-1, n)            (1) 

Where d represents the present day and n is the slot identifier. One 
of the most important features of EWMA is its high adaptability 
for seasonal weather variations. The efficiency of EWMA in terms 

of time taken to adapt to such seasonal change depends on the 
duration of weather variation and an accurate choice of α. Fig. 3 
presents an illustrative example for predicting energy using two 
different α values. In this example, the energy estimation in slot 2 
is performed in a case when the weather condition changes 
abruptly. The amount of harvested energy continues to be four 
times greater than the estimated energy. An α value of 0.5 exhibits 
slower adaptability than an α value of 0.3. This is because, as 
discussed above, smaller α values take the latest real energy 
measurement into consideration more aggressively. After a 
specific time period, both α values start to provide accurate overall 
predictions.  
The major disadvantage of EWMA is its vulnerability to temporary 
changes. For example, the example presented below shows that the 
energy expectation on the day after (T+6) day will certainly be a 
value close to 40. If, however, contrary to expectation, the 
harvested energy on this day is significantly higher/lower than the 
expected energy, EWMA produces highly inaccurate results. It is 
therefore crucial to consider the solar energy conditions on the 
current day. 

 

Figure. 3 An example process of EWMA, α = 0.5 and α = 0.3. 

2.2. Accurate Solar Energy Allocation 

Accurate solar energy allocation (ASEA) attempts to allocate the 
harvested energy equally to each slot in a particular day for EH-
WSNs regardless of the amount of generated energy in any slot. To 
do this, it modifies the EWMA to cope with the drawback of 
EWMA. The basic idea of ASEA is to look at the present 
conditions by adding a new parameter, ψ, to Eq. (1). This 
parameter represents the ratio between the actual amount of energy 
harvested and the energy estimated by EWMA in the previous slot. 
The modified equation is therefore given as: 

        Ē(d, n) =  E(d, n) . ψ    where   ψ = R(d, n-1)         (2) 

                                                                            E(d, n-1) 

2.3. Weather-Conditioned Moving Average  

The weather-conditioned moving average (WCMA) is another 
algorithm which takes the current weather conditions into 
consideration. WCMA collects past energy values which are stored 
in a matrix, E(i, j), where j is a sample on the ith day. One of the 
main distinctive features of WCMA is that it incorporates previous 
samples into the prediction equation. Also, the mean value of the 
corresponding samples from previous days is calculated. 
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Therefore, the prediction equation related to the previous sample 
and the mean value of the sample given by Eq. (3) is: 

  E(d, n+1) = α E(d, n) + (1 – α) M(d, n+1)GAP         (3) 

Where E(i,j) is the energy values taken from the E matrix and 
M(i,j) is the mean value of the sample. GAP is a new weighting 
factor introduced in order to reflect current weather conditions. 
The mean value of the sample is calculated as follows: 

                      M(d, n+1) =    ∑ E(𝑖, 𝑛 + 1)
D

𝑖=1
                 (4)  

                                                                    D 

To compute the GAP value, a vector, V = [V1, V2,…, VK], is first 
defined. The elements of the V vector are the previous samples in 
the same day, each of which represents the ratio of the the 
harvested energy to the mean value. Hence, a value less than 1 
means that the harvested energy is less than the mean: 

                                    Vk  =   E(d, n-K+k)                              (5) 

                                                M(d, n-K+k) 

Once the elements of the V vector are calculated, these values are 
weighted according to their distance from the actual sample. This 
is to give more importance to closer samples and less importance 
to far samples. To do this, a vector, P = [p1, p2,..., pK], is defined as 
follows: 

                                               pk = k                                            (6) 
                                                        K 

The weighting factor, GAP, is finally computed as: 

                                            GAP  =  V.P                                     (7)  

                                                            ∑P 

The size of the E matrix is an important parameter to establish. 
Considering the limited memory in sensor nodes, the size should 
be carefully selected whilst meeting the memory constraint. Also, 
the value of K which is the number of past samples to weight 
should be carefully adjusted. It must be large enough to observe 
the current weather condition but also small enough not to consider 
some samples that do not have any impact on present conditions, 
such as night values. In the original paper on WCMA, from an 
analysis of the choice of dimensions of the E vector, the value of 
K was calculated. The best values found to minimize the prediction 
error were D = four days and K = three samples. These values were 
used in all the experiments in this current study. Also, an α value 
of 0.7 was the optimum value that gave the minimal error. 

3. Performance Evaluation 

The performances of the EWMA, ASEA and WCMA schemes 
were compared using real solar panel outputs in the second month 
of each season of 2015. The purpose of this was to demonstrate the 
behavior of the performance throughout the year. Fig. 4 presents 
the performance of the schemes in terms of prediction error ratio 
(PER). Each point in the curves represents the average of 30 days. 
Additionally, Fig. 4e depicts the prediction accuracy in January.  
Three popular solar energy prediction schemes have been studied 
in this paper. The performance of the schemes in terms of the 
prediction error using real solar panel outputs has been presented 
and compared. It has been shown that the level of ambient energy 
to be harvested is highly time-variable, so it is crucial to consider 
current weather conditions when predicting energy, particularly in 
changing diurnal weather conditions. Also, the weighting factor, α, 
in all three schemes plays an important role in enabling accurate 
prediction. The main conclusion of this study for high accurate 

energy prediction is to reconcile the past energy generation profile 
with the current energy pattern. 
It is obvious that the weighting factor, α, had a significant effect 
on the prediction accuracy for all three schemes. EWMA and 
ASEA exhibited a similar performance as ASEA is an extension of 
EWMA. ASEA achieved a better performance than EWMA 
because ASEA reflects the latest current energy condition. The 
results tell us that high and low values of α in EWMA and ASEA 
provide highly inaccurate predictions, whereas medium values of 
α, 0.4 < α < 0.9, ensure more accurate predictions. In EWMA and 
ASEA, therefore, the estimated average energy (E) and real 
measured energy (R) (see Eq. (1)) should contribute closely to 
achieving accurate predictions. However, WCMA provided 
significantly high accurate predictions at low values of α. Eq. (3) 
clearly shows that low values of α mean a low contribution of 
energy in the previous slot. In other words, the mean of the energy 
in association with the current energy condition has more influence 
on the prediction. Hence, WCMA with small values of α, α < 0.6, 
predicts energy more accurately than EWMA and ASEA, but the 
high values of α make WCMA the worst scheme. As discussed 
above, EWMA would not be a good choice in frequently changing 
weather conditions. In January, the weather changes almost daily, 
as shown in Fig. 4e. The PER of EWMA is close to 0.6 (60%) at 
an α value of 0.7. When the weather does not change frequently, 
as in July, the PER reduces to 0.18. In all cases, ASEA has a similar 
curve to that of EWMA improving the PER. In WCMA, on the 
other hand, the contribution of energy in the previous slot of the 
same day does not actually seem to be relevant as the PER rises 
with the increasing influence of the previous slot’s energy value.  
We conclude that WCMA is the best prediction algorithm as it 
benefits from the long-term current solar energy condition, 
provided that α has a small magnitude. EWMA can be considered 
as a baseline scheme which takes seasonal solar energy into 
consideration, resulting in high incorrect predictions with 
frequently changing solar conditions. ASEA considers only the 
latest solar energy condition which causes high inaccurate 
predictions in particular in times of temporary weather changes. 
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(c) 

 

(d) 

 

(e) 

Figure. 4 Prediction error ratios for three schemes for four months: (a) 

January, (b) April, (c) July and (d) October, as well as (e) prediction 
accuracy in January. 

4. Conclusions 

Three popular solar energy prediction schemes have been studied 
in this paper. The performance of the schemes in terms of the 
prediction error using real solar panel outputs has been presented 
and compared. It has been shown that the level of ambient energy 
to be harvested is highly time-variable, so it is crucial to consider 
current weather conditions when predicting energy, particularly in 
changing diurnal weather conditions. Also, the weighting factor, α, 
in all three schemes plays an important role in enabling accurate 
prediction. The main conclusion of this study for high accurate 
energy prediction is to reconcile the past energy generation profile 
with the current energy pattern. 
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