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Abstract: The principal aims are to investigate asymptotic properties of the stochastic population process as a continuous-time Markov 

chain called Markov Q-Process. We investigate asymptotic properties of the transition probabilities of the Markov Q-Process and their 

convergence to stationary measures.  

Keywords: Markov Branching processes; Markov Q-processes; transition function; q-matrix; limit theorems.  

 

1. Introduction and Preliminaries  

Introducing the population of monotype individuals that are 

capable to perish and transforms into individuals of random 

number of the same type, we are interested in its evolution.  

We consider an evolution process of this population in which 

each individual existing at epoch [ ; )0t , 

independently of his history and of each other for a small time 

interval ( ; )t t  transforms into \{ }0 1j  individuals with 

probability ( )ja o  and, with probability ( )11 a o  each 

individual survives or makes evenly one descendant (as 0 ), 

where { }0 0  and , ,1 2 . Here ja  are 

intensities of transformation that 0ja  for \{ }0 1j  and 

\{ }00 1 10 jja a a . Appeared new individuals 

undergo transformations under same way as above. Letting 

( ),Z t t  be the population size at the moment t , we 

have the homogeneous continuous-time Markov Branching 

Process (MBP) which was first considered by Kolmogorov and 

Dmitriev [9]. The process ( ),Z t t  is a Markov chain with 

the state space on 0 . The Markovian nature of this process 

yields that its transition functions  

( ) : ( ) ( ) ( )ij iP t Z t j Z t j Z iP P , 

, satisfy the branching property  

( ) ( ) ( ) ( )
i

i

ij j j j
j j j j

P t P t P t P t
1 2

1 2

1 1 1 .             (1.1) 

for all ,i j 0 . Thus, for studying of evolution of the process 

( ),Z t t  is suffice to set the transition functions ( )1jP t . 

These in turn, as it has been noted, are calculated using the local 

densities ja  by relation  

( ) ( ),1 1 0j j jP a o ,                   (1.2) 

where ij  represents Kronecker’s delta function. Probability 

generating functions (GFs) are the main analytical tool in our 

discussions on MBP. A GF version of relation (1.2) is  

( ; ) ( ) ( ), 0F s s f s o , 

for all 0 1s , where  

( ; ) ( )
0

1
j

j
j

F t s P t s     and     ( )
0

j
j

j

f s a s . 

Using property (1.1) it is easy to see  

( ; ) : ( ) ( ; ) ,
0

ij
i ij

j

F t s P t s F t s i .          (1.3) 

By the formula (1.3) can be computed that  

( ) ( )
0

at
i ij

j

Z t jP t ieE . 

The last formula shows that long-term properties of MBP seem 

variously depending on the parameter a . Hence the MBP is 

classified as critical if 0a  and sub-critical or supercritical if 

0a  or 0a  respectively.  

The probability ( ) ( )0 0i iP t Z tP  denotes the MBP is dying 

out in time t . The extinction probability lim ( )10tq P t  

can be considered as the probability of all descendants of one 

initial particle eventually will be lost. Sevastyanov [15] proved 

that is the least non-negative root of ( ) 0f s  and that 1q  if 

the process is non-supercritical. It directly follows from last 

results that ( ; )q F t q  for any t . Moreover ( ; )F t s q  as 

t  uniformly for all 0 1s r . Owing to the last 

assertion the function ( ; ) ( ; )R t s q F t s  plays an important 

role in observing limit behaviors of MBP. 

Let the random variable inf : ( ) 0T t Z t  be the 

extinction time of MBP. An asymptote of probability of this 

variable has first been observed by Sevastyanov [15]. Exertions 

of this variable treated also by Heatcote, Seneta, Vere-Jones [4], 

Nagaev, Badalbaev [11] and Zolotarev [17]. Put the conditioned 

distribution  
( ){ }:T t
i i t TP P . 

In the discrete-time situation probabilities ( ){ }T t
iP  converges 

as  to a distribution measure, which defines the Markov 

chain called the Q-process; see Athreya and Ney [2, pp.56–60]. 

The Q-process was considered first by Lamperti and Ney [10]. 

Some properties of it were discussed by Pakes [12–14], 

Formanov and Imomov [3] and by author [8].  

A closer look shows that in MBP case the limit 
( )lim ( )T t
i Z t jP  has an honest probability measures 

( ) ( )ijt tQ  which defines the homogeneous continuous-time 

stochastic process as Markov chain called the Markov Q-Process; 

see Imomov [5–7]. Let ( )W t  be the state size in the Markov Q-

Process at the moment t . Then ( ) ( )
d

W Z0 0  and  
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( )( ) ( ) lim ( )T t
i ij iW t j t Z t jP P . 

The paper is devoted to investigate structural and asymptotic 

properties of the Markov Q-Process. In particular we compute the 

q-matrix and the GF version of Kolmogorov backward equation 

implied by ( )tQ .  

2. The Markov Q-process  

As it was said in first Section the limit of conditional transition 

function ( ) ( )T t
i Z t jP  as  and for all t  is an 

honest probability measure Q . This measure defines so-called 

Markov Q-Process (MQP) to be the continuous-time Markov 

chain ( ),W t t  with the state space . The transition 

function ( ) ( )ijt tQ  is form of (see[6])  

( )( ) lim ( ) ( )
j i

T t
ij i ijt

jq
t Z t j P t

i
P ,          (2.1) 

for ,i j , where exp{ ( )}f q  and ( )f q 0 . It is easy to be 

convinced that 0 1  decidedly. To wit 1  if 0a  and 

1  otherwise. The random function ( )W t  is the state size at 

the moment t in MQP.  

Combining equalities (1.2) and (2.1) we obtain the following 

representation for probabilities ( )1jQ :  

( ) ( ),1 1j j jp o j ,              (2.2) 

as 0 , with probability densities 0 0p , ln1 1p a , and 

1 0j
j jp jq a  for \{ }1j , where ja  are evolution 

intensities of MBP ( )Z t . It follows from (2.2) that GF of 

intensities jp  has the form of  

( ) : ( ) ( )j
j

j

g s p s s f qs f q .            (2.3) 

Needles to see that this GF is infinitesimal because 

( )1 0jjg p . So the GF ( )g s  completely defines the 

process ( ),W t t , where jp  are intensities of process 

evolution that 0jp  for \{ }1j  and  

\{ }
1

1

0 j
j

p p . 

2.1. Construction, existence and uniqueness 

Let’s now discuss basic properties of transition matrix 

( ) ( )ijt tQ . Herewith we will follow methods and facts 

from monograph of Anderson [1]. First we prove the following 

theorem.  

Theorem 1. Let ( ),W t t  be the MQP given by 

infinitesimal GF ( )g s . Then the transition matrix ( )tQ  is 

standard. Its components ( )ij t  are positive and uniformly 

continuous function of t  for all ,i j .  

Proof. According to the branching property (1.1), we see that 

( ) ( )1ij ij j iP ia o  as 0 . Hence seeing 

representation (2.1)  

( ) ln ( ),

( ) ( ),

1

1

1ii

j i
ij j i

ia o

jq a o
               (2.4) 

as 0  and for all ,i j . Considering the representations 

(2.4), we have the following relations:  

\{ }

\{ }

( ) ( ) ( )

( ) ( )

( ) ,

ij ij ij ii
j j i

ij ii
j i

ii

1

1

2 1 0

 

as 0 . So that ( )ij t  is standard.  

A positiveness of functions ( )ij t  is obvious owing to (2.4). The 

Markovian nature of the process ( ),W t t  implies that the 

following Kolmogorov-Chapman equation holds:  

( ) ( ) ( )ij ik kj
k

t t . 

So supposing 0  it follows that  

\{ }

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) .

ij ij ik kj ij
k

ik kj ij ii
k i

t t t t

t t 1
 

The last relation gives  

\{ }

\{ }

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ),

ii ij ii

ij ij

ik kj
k i

kj ii
k i

t

t t

t

1 1

1

 

so ( ) ( ) ( )1ij ij iit t . Similarly  

( ) ( ) ( ) ( )ij ij ii iit t t t1 1 . 

Therefore we obtain ( ) ( ) | |1ij ij iit t  for any 

0  and for all ,i j . The obtained relation implies that 

( )ij t  is uniformly continuous function of t  because 

lim ( )0 1ii  for all i . 

The theorem is proved.  

It easily be convinced that a GF version of (2.4) is  

( ) ( ; )
( ; ) : ( )

i
W t j

i i ij t
j

x qs

qs F t x
G t s s t s

x qi
E , 

or more obviously that  

( ; )
( ; ) ( ; )

1i

i

F t qs
G t s G t s

q
,                    (2.5) 

where  

( ; )
( ; ) ( ; )1 t

x qs

s F t x
G t s G t s

x
. 

Theorem 2. All states of the Markov chain ( ),W t t  are 

stable. The transition function ( ) ( )ijt tQ  is the Feller 

functions. These are differentiable and has a finite and 

continuous derivative by t . Its q-matrix has components  

( )ln , ,

, ,
ij j i

ip i i j

q jp
i j

j i

1

1

1

1

                     (2.6) 

where ip  are in (2.2) and 0ijq  when i j  and, : 0i iiq q  

for all ,i j . Moreover it satisfies the identity  

( ) ( ) ( ), ,ij ik kj
k

t t t ,         (2.7) 

the backward Kolmogorov system for all ,i j . 

Proof. It follows from relation (2.4) that for all i   
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( )
: lim

0

1 ii
iq , 

that is all states are stable and also, the right-sided derivative 

( )0ij  is finite. It follows from relation (2.5) that  

( ; ) ( ; )
( )

1i

ij j

G t s F t qs
t

qs
 

for 0 1s . It can be convinced that ( ; )F t qs q  is the GF of 

sub-critical MBP which converges increasing to one, so that 

( ; ) 1F t qs q . Hence ( ) 0ij t  as i . The last condition 

implies that ( )ij t  is the Feller function. Therefore ( )tQ  has a 

stable q-matrix which components are ( )0ij ijq ; see 

Anderson [1, p.43].  

Next, since all states are stable then ( ) ( )ijt tQ  is 

differentiable and has a finite and a continuous derivative on ; 

see Anderson [1, p.10]. Let’s compute this derivative. It follows 

from (4.1) that  

( )
( ) ( ) ( ) ( )

( ) ( ) ln ( ) .

j i
ij

ij ij ij ijt

j i

ij ijt

P tjq
t t t P t

i

jq
P t P t o

i

 

Taking limit as 0  we receive from here that  

( ) ( ) ( )ln , ,
j i

ij ij ijt

jq
t P t P t i j

i
.       (2.8) 

Being that lim ( )0ij ijq , we should calculate ( )0ijP . It 

follows from the general theory of MBP that  

( ) lim ( )0 10ij ij j iP P ia . 

Therefore we get  

ln1

j i

ij j i ij

jq
q ia

i
. 

The obtained result in context of densities jp  is equivalent to 

that (2.6). We see that 0ijq  when i j  for all ,i j  and, 

due to both 1p  and ln  are negative then : 0i iiq q .  

Owing to the Markovian nature of ( )W t  it follows from the 

general theory of continuous-time Markov chain that the equation 

(2.7) holds. In particular, from here  

( ) ( )ij ik kj
k

t q t . 

The proof is completed.  

Let ( )i s  be the GF of q-matrix of ( ) ( )ijt tQ  that is  

( ) : ( )j j
i ij ij

j j

s q s s0 . 

Using (4.6) it follows that  

\ { }

( ) ( ) ln

( ) ln ( ).

j ii j
i

j i

ji j i

j

jp
s ip i s s

j i

p
i s s s s g s

j

1
1

1 1

1
1

1

 

On the other hand it is easy to see that  

( )sj j

j

p g u
s du
j u0

. 

Thence we obtain that  

( ) ( ) ( )
( ) i
i

i m s g s
s s

s

1
,                    (2.9) 

where ( )g s  is defined in (2.3) and  

( )
( ) : ln

s g x
m s s dx

x0
. 

Now more general, consider  

( ; )
( ; ) ( ) j i
i ij

j

G t s
t s t s

t
. 

After some calculations we make sure that the generalization of 

(2.9) for all t  is the following identity  

( ) ( ; ) ( ; )
( ; ) ( ; )

( ; )
i i

i m F t s g F t s
t s G t s

F t s

1
,    (2.10) 

that is the GF version of (2.8), where ( ; ) ( ; )F t s F t qs q  is the 

GF of sub-critical MBP.  

Theorem 3. The transition function ( ) ( )ijt tQ  is 

differentiable and is the unique solution of the backward 

Kolmogorov system, which is the unique GF solution of the 

differential equation  

( ; )
( ; ) ( ; )

G t s
h F t s G t s

t
,                    (2.11) 

with ( ; )0G s s , where ( ) ( )h s g s s  and ( ; ) ( ; )F t s F t qs q .  

Proof. Following the proof of the Theorem 1 it follows that  

( ) ( ) ( ) ( )0 1ij ij ij iit t t  

and similarly  

( ) ( ) ( ) ( )0 1ij ij ij iit t t . 

Hence for the difference ( ; ) ( ; ) ( ; )G t s G t s G t s  we 

receive that  

( ; ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ; ) ( ) .

j
j j

j

j
j j

j

j
j

j

G t s t t s

t t s

t s

G t s

1 1

11 1 1

11 1

11

0

1

2 1

2 1

 

Since the function ( )ij t  is standard, it follows from the last 

inequality that ( ; ) 0G t s  as 0  implying that ( ; )G t s  is 

continuous function of t  uniformly for 0 1s . Therefore 

it is differentiable. It can easily be seen that a GF version of the 

relation (2.2) is  

( ; ) ( ) ( ), 0G s s g s o ,           (2.12) 

for 0 1s . The equation (2.11) follows from (2.10) with 

1i . The boundary condition ( ; )0G s s  follows from (2.12). 

The uniqueness of the solution of (2.11) follows from the 

classical differential equations theory.  

The theorem is proved.  

From Theorem 3 we get the following assertion. 

Corollary. The differential equation (2.11) is equivalent to the 

following integral equation:  

( ; )
( ; ) ln

t G t s
h F s d

s0
,                     (2.13) 

with boundary condition ( ; )0G s s .  

2.2. Classification and a limit theorem 

As it has been noticed above, that parameter ( )1a f  plays a 

regulating role for MBP and is subdivided three types of process 

depending sign of a . Note that evolution of МQP is regulated in 

essence by the positive parameter . Thus might be subdivide 

two types of process in depending on values of . Putting 

together equalities (2.5) and (2.13), we write that  
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( ; ) ( ; ) exp ( ; )
1

0

i t

iG t s s F t s h F s d ,        (2.14) 

where ( ; ) ( ; )F t s F t qs q . Let : ( )1g  is finite. Direct 

differentiating in point 1s , it follows from (2.14) that  

( ) ( )t
iW t i W t1E E  

and  

, .
( )

, .

t

W t
t

1 1 1

1 1
E                   (2.15) 

Moreover we obtain the variance structure  

, ,
( ) ( )

, .

t ti
W t W i

it

1 1 1 1
0

1
Var  

where ln . The formula (2.15) implies that when 1  

( ) ,iW t t tE , 

and if 0 1   

( ) ,1iW t tE . 

Last findings give us evidence that in 1 the MQP has 

transience property. Thereby MQP we classify as restrictive if 

1  and explosive if 1 .  

Theorem 4. The MQP is  

1) positive if it is restrictive and : ( )1g  is finite; 

2) null if it is explosive.  

Proof. To prove the assertion (i) from (2.13) we get  

( ; )

ln ( ) ( ; )

( ) ( )
,

( ) ( )

t

F t

t h F d

h x h x
dx dx

f x f x

11
0

0 1

0 0

0

 

since ( ; )0 1F t  as t , where ( ) ( )f s f qs q . The 

condition  implies that integral in right-hand side 

converges. Hence lim ( )11 0t t . For part (ii) we recall that 

1q  and ( ) ( )h s s f s  if 1 . Similarly  

( ; )

ln ( ) ( ; )

( ) ( )
.

( ) ( )

t

F t

t h F d

h x f x
dx dx

f x f x

11
0

0 1

0 0

0

 

So that lim ( )11 0t t .  

The theorem is proved.  

We complete the paper with stating of the following limit 

theorem without proof. 

Theorem 5 [6]. Let : ( )1g  is finite.  

1. If MQP is restrictive, then the variable ( )W t tends in mean 

square and with probability one to a random variable W having 

finite mean and variance:  

1WE      and     WVar . 

2. If MQP is explosive, then for any 0x  

( )

( )

x x
i

W t
x e e

W t
21 2P

E
, 

as t , for all i . 
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