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 Payload estimators have many parameters, which are trained using the recorded position, velocity 

and known payload information. To use these payload estimators in the real-time applications, 

accurate position and velocity information of the system are required. In this paper, first recently 

proposed sliding-mode observers (SMOs) are designed and compared for velocity estimation of a 

nonlinear servo system. Second, a parameter estimation based on sliding-mode super-twisting 

approach is designed to estimate unknown and varying parameter for a class of nonlinear systems. 

The convergence property of observers is considered using Lyapunov stability method. In the 

applications, the constant and varying payloads of the servo system have been estimated using the 

designed method and compared with Extended-Kalman Filter (EKF). In the final section, artificial 

noises with different SNR are applied to the measurement signal. When the less amplitude of noise 

signal is applied, second order SMO estimated the states and the payload better than EKF. 

However, EKF provides much better estimation results than second order SMO for large amplitude 

of noise signals. For the sake of generalization, second order SMO is a fast and robust observer 

for small noise cases. In addition, the filtering property of EKF has still importance for large noise 

cases. 

 
This is an open access article under the CC BY-SA 4.0 license. 
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1. Introduction 

 

Robotic manipulators in industry, railway vehicles, 

medical devices and many other equipment require 

sensory devices [1]. However, measurement device cannot 

be available or expensive for an application. Therefore, 

soft sensors/state observers have been designed to estimate 

unmeasured states and unknown parameters of the linear 

and nonlinear systems since 60s [2]. The acquired 

knowledge from soft sensors is essential for monitoring, 

feedback control, decision making etc. Nowadays, any 

observer can easily be embedded into the microcontroller 

and estimated measurements can be conveniently used for 

specific applications. Besides, microcontrollers are more 

flexible than past with respect to speed and memory. 

State observers have first been introduced for linear 

systems in [3], and later developed for nonlinear systems 

in [4, 5]. The other well-known nonlinear observers are 

high-gain observer (HGO) [4-6], sliding-mode observer 

(SMO) [7, 8], Extended-Kalman filter (EKF) [9] and other 

nonlinear Kalman filters [10], Takagi-Sugeno fuzzy 

observer [11], adaptive fuzzy/neural observers [12, 13]. 

Recently, there have been many developments on the 

sliding-mode theory [14] to improve speed, accuracy and 

stability conditions. The sliding-mode observers based on 

the sliding-mode theory are known with robustness to 

uncertainties and distortions [15, 16]. Due to finite-time 

convergence, SMOs have been recently applied to many 

real-time systems and compared mostly with other 

nonlinear observers [17]. 

The unknown payload of robot manipulators and other 

mechatronic systems have been estimated using several 

methods in the literature [18, 19]. Off-line trained 

fuzzy/neural systems have been designed in [20, 21]. 

However, these payload estimators have many parameters, 

which are trained using the recorded position, velocity and 

http://www.dergipark.org.tr/ijamec
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known payload information. In order to implement these 

approaches in a real-time application, the correct position 

and velocity information are needed, which cannot be 

available for all systems. A robust high precision 

controller has been developed against unknown payloads 

in [22]. In [23], an adaptive system based on the prediction 

error-minimization is proposed that estimates the correct 

payload online, likewise the velocity measurement is 

needed. An adaptive robust control method has been 

developed in [24] for precise motion control and payload 

estimation. In [25], a neural-network model is trained off-

line with a large dataset and a Kalman filter is used to 

online estimation of the payload. The estimated payload 

has been used in [20, 21] to improve the control 

performance of the manipulator.  

The rest of the paper is organized as follows. First, 

sliding mode observers and Extended-Kalman filter are 

summarized in Section 2 and Section 3, respectively. 

Section 4 introduces the parameter estimation method. 

Afterward, Section 5 presents the velocity estimation and 

parameter estimation results. Finally, Section 6 concludes 

the paper. 

 

2. Sliding-mode Observers 

 

Sliding mode observers create sliding motion of error 

between the measured system output and observer output 

[15]. Because of the finite-time, fast convergence, 

robustness with respect to uncertainties, stability and the 

possibility of uncertainty estimation, SMOs are widely 

used in the literature [16, 17].  for state estimation and 

control of nonlinear systems. In the following subsections, 

classical SMO (CSMO), second-order SMO (SSMO), 

integral SMO (ISMO), and terminal-mode SMO (TSMO) 

approaches are briefly explained.  

Consider an 𝑛-dimensional, nonlinear and continuous-

time single-input single-output (SISO) nonlinear system in 

companion form,  

𝑥(1) = 𝑥2,

⋮
𝑥(𝑛) = 𝑓(𝐱, 𝑝, 𝑢),
𝑦 = 𝑥1

 

(1) 

where 𝐱(𝑡) ∈   ℜ𝑛  is the state vector, 𝑢(𝑡) ∈   ℜ  is the 

control input applied, 𝑦(𝑡) ∈   ℜ  is the output 

measurement and 𝑝 ∈   ℜ is an unknown parameter of the 

nonlinear system, respectively. It is assumed that the 

dynamics of 𝑓(. )  is known and continuously 

differentiable with respect to the states and parameters. 

The aim in the estimation problem is to get an estimate of 

unmeasurable states �̂�(𝑡) and unknown parameter �̂�(𝑡) of 

nonlinear system (1) using available measurement. 

 

2.1. Classical Sliding-Mode Observer 

For the given nonlinear system (1), it is assumed that 

𝑥𝑚(𝑚 = 1, , 𝑁) is the single measurement available. The 

classical sliding-mode observer (CSMO) [7] is designed as 

follows 

�̇̂�1 = −ℎ1𝑒𝑚 + �̂�2 − 𝑘1sign(𝑒𝑚)

�̇̂�2 = −ℎ2𝑒𝑚 + �̂�3 − 𝑘2sign(𝑒𝑚)

⋮
�̇̂�𝑛 = −ℎ𝑁𝑒𝑚 + 𝑓 − 𝑘𝑁sign(𝑒𝑚)

 

(2) 

where 𝑒𝑚 = �̂�𝑚 − 𝑥𝑚  is the measurement error and 

𝑓(𝐱, 𝑢) is an estimation of 𝑓(𝐱, 𝑢). The constants ℎ𝑖  are 

chosen as for a classical Luenberger observer to ensure 

asymptotic error decay, and 𝑘𝑖  constants are the design 

parameters for switching of the sliding surface. The 

derived 𝑁 th error dynamics are given by following 

equation.  

�̇̂�1 = −ℎ1𝑒𝑚 + 𝑒2 − 𝑘1sign(𝑒𝑚)

�̇̂�2 = −ℎ2𝑒𝑚 + 𝑒3 − 𝑘2sign(𝑒𝑚)

⋮
�̇̂�𝑁 = −ℎ𝑁𝑒𝑚 +△ 𝑓 − 𝑘𝑁sign(𝑒𝑚)

 

(3) 

△ 𝑓 = 𝑓 − 𝑓 is assumed to be bounded as 𝑘𝑁 ≥ | △ 𝑓|. 

The asymptotic convergence and stability conditions are 

proven using Lyapunov stability [8].  

 

2.2. Second-Order Sliding-Mode Observer 

The second-order sliding-mode observer (SSMO) with 

super-twisting algorithm [26] has been introduced and 

applied to many mechanical systems where the error 

dynamics are different than that of conventional sliding 

mode observer as  

�̇̂�1 = �̂�2 + 𝜆|𝑥1 − �̂�1|1/2sign(𝑥1 − �̂�1),

�̇̂�2 = 𝑓(𝑥1, �̂�2, 𝑢) + 𝛼sign(𝑥1 − �̂�1),
 

(4) 

where the parameters are selected as 

𝛼 > 𝑓+

𝜆 > √
2

𝛼 − 𝑓+

(𝛼 + 𝑓+)(1 + 𝜌)

1 − 𝜌
,        0 < 𝜌 < 1.

 

(5) 

The 𝑓+  parameter is the double maximum possible 

acceleration of the system, derived as 𝑓+ >

|𝑓(𝑥1, 𝑥2, �̂�2, 𝑢)| where 𝑓(. ) is the functional error of the 

observer dynamics. The bounds of the parameters are 

found that the second-order SMO satisfies the Lyapunov 

stability [26]. The sliding-mode super-twisting approach is 

very efficient for the estimation and control of second 

order nonlinear systems and applied to real-time systems 

[27]. 
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2.3. Integral Sliding-Mode Observer 

Integral sliding-mode observer (ISMO) [28] of the 

nonlinear systems has been designed as  

�̇̂�1 = �̂�2 + 𝑣1,

�̇̂�2 = 𝑓(𝑥1, �̂�2, 𝑢) + 𝑣2,
�̂� = �̂�1,

 

(6) 

where  

𝑣1 = 𝜌1𝑒 + 𝛾1sign(𝑠),
𝑣2 = 𝜌2𝑒 + 𝛾2sign(𝑠),

 
(7) 

with sliding surface 𝑠(𝑡) = 𝑒(𝑡) + 𝜎 ∫
𝑡

0
𝑒(𝜏)𝑑𝜏 . The 

measurement error in the equation of the sliding surface is 

defined as 𝑒 = 𝑦 − �̂� where 𝑦 is the measured output, �̂� is 

the estimated output. The selected positive constants drive 

the observer in stable region. 

 

2.4. Terminal Sliding-Mode Observer 

The nonlinear system (1) is assumed in the following 

form,  

�̇� = 𝐀𝐱 + 𝐟(𝐱) + 𝐁𝐮,
𝑦 = 𝐂𝐱,

 
(8) 

where 𝐱(𝑡) ∈   ℜ𝑛 is the state vector, 𝐮(𝑡) ∈   ℜ𝑟 is the 

vector of applied control input and 𝑦(𝑡) ∈   ℜ  is the 

output. The terminal sliding-mode observer (TSMO) [29] 

has been designed as a second-order nonlinear systems as 

follows.  

�̇̂� = 𝐀�̂� + 𝐟(�̂�) + 𝐁𝐮 + 𝐋𝑒 + 𝒗,
𝑦 = 𝑥1,

 
(9) 

where 

𝑣1 = −𝛼sign(𝑒1),    𝑣2 = 𝛽𝑣1
𝑞/𝑝

. (10) 

and 1 <
𝑞

𝑝
< 2 . The feedback gain 𝐋 = [𝐿1    𝐿2]𝑇  is 

designed as linear observer gain using Lyapunov equation 

𝐀0
𝑇𝐏 + 𝐏𝐀0 +

1

𝜖
𝐏𝐏 + 𝛾2𝐈𝐧: = 𝐐,

 

(11) 

with 𝐀0 = [
𝑎 − 𝐿1 1

−𝑎2 − 𝐿2 −𝑎
] where 𝜖 > 0, 𝐏 > 0, 𝐐 <

0 and 𝛾 is the Lipschitz constant of the system. Following 

the requirements of the constants, the solution of the (10) 

for the observer gain satisfies the stability of the observer.  

 

3. Extended-Kalman Filter 

 

The Kalman filter has been introduced as an optimal 

filter for linear systems in [30] and used to estimate the 

unmeasurable states of the linear systems for a half 

century. For the state estimation of nonlinear systems, the 

Kalman filter estimate is based on the linearized system, 

and the filter is called “Extended-Kalman filter” (EKF) 

[9]. The EKF has been also utilized for the parameter 

estimation in [31]. The continuous-time EKF dynamics are 

summarized as follows. 

 

i. The nonlinear system dynamics are  

 

�̇� = 𝐟(𝐱, 𝐮, 𝑝, 𝑤),

𝐲 = 𝐡(𝐱, 𝑣),
𝑤 ∼ 𝒩(0, 𝐐),    𝑣 ∼ 𝒩(0, 𝐑),

 

(12) 

where 𝐟(. )  and 𝑔(. )  are nonlinear functions, 𝐱  is the 

system state, 𝐮  is the input and 𝑝  is the unknown 

parameter of the system. In (12), 𝑣  and 𝑤  are normally 

distributed state and measurement noises, respectively. 𝐐 

and 𝐑 are the corresponding covariance matrices.  

 

ii. The linearized dynamics around the current 

estimate are 

 

𝐅 =
𝜕𝐟(𝐱)

𝜕𝐱
|𝐱=�̂�,    𝑁 =

𝜕𝐟(𝐱)

𝜕𝑤
|𝐱=�̂�,

𝐇 =
𝜕𝐡(𝐱)

𝜕𝐱
|𝐱=�̂�,    𝑀 =

𝜕𝐡(𝐱)

𝜕𝑣
|𝐱=�̂�.

 

(13) 

iii.  The following matrices will be used for update:  

 

𝐐𝐜 = 𝐍𝐐𝐍𝐓,    𝐑𝐜 = 𝐌𝐑𝐌𝐓. (14) 

iv. The extended-Kalman filter update equations are 

 

�̇̂� = 𝐟(�̂�, 𝐮, 𝑤) + 𝐊[𝐲 − 𝐡(�̂�, 𝑣)], (15a) 

𝐊 = 𝐏𝐇𝐓𝐑𝐜
−𝟏, (15b) 

�̇� = 𝐅𝐏 + 𝐏𝐅𝐓 + 𝐐𝐜 − 𝐏𝐇𝐓𝐑𝐜
−𝟏𝐇𝐏, (15c) 

  where 𝐊 is the Kalman gain matrix and 𝐏 is the error 

covariance matrix. The initialization of 𝐏 is based on the 

estimated initial states of the system. In (15b) and (15c), 

the 𝐊  and 𝐏  matrices are updated using the linearized 

system dynamics (13) and (14). Afterward, the states and 

parameters of the Kalman filter (15a) are updated using 𝐊 

and error 𝐞 = 𝐲 − 𝐡(�̂�, 𝑣). For the parameter estimation of 

system (1) using EKF, the unknown parameter is added as 

an additional state to original states and its estimate is 

updated using the derivative of 𝐟(. )  w.r.t unknown 

parameter inside 𝐅 matrix to calculate the error covariance 

matrix 𝐏 and Kalman gain 𝐊 [10]. 

 

 



Çetin and Beyhan, International Journal of Applied Mathematics Electronics and Computers 09(01): 007-014, 2021 

- 10 - 

 

4. Parameter Estimation 

 

In this paper, the parameter adaptation method is 

designed using the sliding-mode theory. For the system 

given in (1), the parameter estimate is designed as 

�̇̂� = |𝑒|sign(𝑒)
𝜕𝑓(�̂�, �̂�, 𝑢)

𝜕�̂�
 

(17) 

where 𝑒 = 𝑦 − �̂� with 𝑦 = 𝑥1 . The nonlinear function 

of the system is differentiable with respect to unknown 

parameter such that it is assumed in the form of  

𝑓(�̂�, 𝑝, 𝑢) = �̂�𝜓(�̂�, 𝑢) + 𝛿(�̂�, 𝑢), (18) 

where 𝜓(�̂�, 𝑢) is a nonzero function. The stability of the 

state observer is not affected from the parameter 

estimation due to bounded uncertainties which means that 

𝑓− < 𝑓(�̂�, �̂�, 𝑢) < 𝑓+. Afterward, the convergence of the 

estimated parameter can be shown using Lyapunov 

stability as follows. The parameter error is defined as 𝑝 =

𝑝 − �̂�  where its derivative is found as �̇� = 0 − �̇̂� =

−|𝑒|sign(𝑒)𝜓(�̂�, 𝑢) . The error dynamics of the super-

twisting SSMO is  

�̇̃�1 = �̃�2 − 𝜆|𝑒|1/2sign(𝑒),

�̇̃�2 = �̃�𝜓(. ) − 𝛼sign(𝑒).  

(19) 

The Lyapunov function of the parameter estimation is 

given as 

𝑉 =
1

2
𝑝2, 

(20) 

and its time derivative is derived as 

�̇� =
1

2
𝑝�̇� +

1

2
�̇�𝑝,

= −𝑝�̇̂�,

= −𝑝|𝑒|sign(𝑒)𝜓(�̂�, 𝑢).

 

(21) 

The estimation error of the second state goes to zero in 

time and its time derivative is assumed equal to zero as 

�̇̃�2 = 0. Then the parameter error is found as 𝑝𝜓(�̂�, 𝑢) =

𝛼sign(𝑒). The time change of the Lyapunov function is 

finally derived as 

�̇� = −𝛼−1|𝑒|(𝑝𝜓(�̂�, 𝑢)2 < 0, (22) 

where 𝛼 > 𝑓+ . The time change of the Lyapunov 

function implies that the function 𝑉  is monotonically 

decreasing until 

|𝑒|(�̃�𝜓�̂�, 𝑢)2 = 0, (23) 

which means that both state estimation error and 

parameter estimation error goes to zero as 𝑡 → ∞. In other 

words, the parameter change drives also the convergence 

of the estimation error. Then, we can write,  

lim
𝑡→∞

�̂� = 𝑝. (24) 

Further, we have bounded the parameter estimate to get 

rid of possible damage to state estimation using the priori 

known bound of the unknown parameter. These bounds 

are usually known for most of the real-time systems such 

as here the maximum and minimum payload value of the 

servo system is known in application part.  

The estimated parameter of the nonlinear system is 

assumed to be bounded as |�̂�| < 𝑀𝑝. Then the parameter 

adaptation rule is modified as, 

�̇̂� = {
Δ�̂� 𝑖𝑓 �̂� < 𝑀𝑝,    or  (�̂�Δ�̂� ≥ 0    |�̂�| = 𝑀𝑝),

𝑇[. ]𝑖𝑓 �̂�Δ�̂� < 0  and  |�̂�| = 𝑀𝑝,
 

(25) 

where Δ�̂� = −|𝑒|sign(𝑒)𝜓(�̂�, 𝑢).  The well-known 

projection operator [32] is defined as 𝑇[. ] = Δ�̂� −
Δ𝑝

||𝑝||
�̂�. 

 

5. Numerical Applications 

 

In this section, first recently proposed sliding-mode 

observers are designed and compared for velocity 

estimation of a nonlinear servo system. Second, a 

parameter estimation based on sliding-mode super-

twisting approach is designed to estimate unknown and 

varying parameter for a class of nonlinear systems. The 

dynamics of the nonlinear servo system are given as  

�̇�1 = 𝑥2,

�̇�2 =
−𝐾2 − 𝑏𝑅

𝑅𝐽
𝑥2 −

𝑔𝐿

𝐽
sin(𝑥1)𝑚𝐿 +

𝐾

𝑅𝐽
𝑢, 

(16) 

where 𝑥1 is the position of the payload in 𝑟𝑎𝑑𝑖𝑎𝑛𝑠 and 

𝑥2 is the angular velocity of the payload in 𝑟𝑎𝑑/𝑠𝑒𝑐. 𝑚𝐿 

is the payload of the system where the payload is assumed 

as an unknown parameter and estimated when it takes 

constant and time-varying values. The servo system is 

shown in Figure 1 and its parameters are listed in Table 1. 

 

Figure 1. Nonlinear servo system 
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The servo system has basically single-link joint 

manipulator dynamics with a small payload. The servo 

system locates its payload to different positions between 

[−𝜋, 𝜋]  according to applied input voltage signal. The 

importance of this system for the applied observers are as 

follows. It is a second-order nonlinear system and has a 

simple nonlinearity such that it is suitable for the 

comparison of the observers for state and parameter 

estimation and also control methods. 

 

Table 1. Parameters of the servo system 

K Electromotive force constant 0.0536 N m/A 

b Damping of the mechanical system 3 × 10−6 𝑘𝑔/𝑠 

R Electric resistance 9.5 Ω 

J Moment of inertia of the rotor 1.91 ×
10−4 𝑘𝑔𝑚^2 

g Gravity acceleration 9.81 𝑚/𝑠^2 

L Length center of disk of payload 0.042 𝑚 

𝑚𝐿 Payload 0 − 100 𝑔𝑟 

 

5.1. State Estimation Results 

Except for the classical sliding-mode observer, 

summarized sliding-mode observers were basically 

proposed for a specific type of nonlinear systems. 

However, the applied nonlinear servo system in (16) is 

suitable for all introduced sliding-mode observers so that 

we can compare their estimation performances. The 

observers are in continuous-time and integrated using 4th-

order Runge-Kutta method. The step-size or sampling-

period of the system is chosen sufficiently small to satisfy 

integration stability of the observer. The design parameters 

of the sliding-mode observers and Extended-Kalman Filter 

are given in Table 2 which are selected by trial-and-error 

approach from a reasonable interval.   

 

Table 2. Parameters of the designed observers 

CSMO ℎ1=100, ℎ2 =1500, 𝑘1=1, 𝑘2=1, 

SSMO 𝜆=100, 𝛼=500, 

ISMO 𝜌1=100, 𝜌2=200,  𝛾1=10, 𝛾2=10, 𝜎=1, 

TSMO 𝛼=2, 𝛽=0.5, q=3, p=2, 𝐿1=100, 𝐿2=200; 

EKF 𝐏𝐨 = 102eye(2), Q = 10−1𝐈𝐧×𝐧. 

 

The input-output signals of the system are presented in 

Figure 2 that have been obtained from the real-time 

feedback-linearization control of the servo system. 

Therefore, it has sharp input changes when the reference 

signal changes. For the system, the position and velocity 

states are measured. However, for the estimation purpose, 

only position state is assumed to be measured.  

 

Figure 2. Control voltage and position of the servo system 

Then, estimated velocities using SMOs and measured 

velocity are compared to determine RMSE values of 

estimation process. The velocity estimation RMSE 

performances are given in Table 3 and SSMO has been 

provided most accurate velocity estimation with least root-

mean squared-error (RMSE) performance.  

 

Table 3. RMSE values of the state estimation 

Observer  
Position 

Estimation 

Velocity 

Estimation 

CSMO 0.0080 0.404 

SSMO 0.0038 0.347 

ISMO 0.0038 0.379 

TSMO 0.0076 0.398 

EKF 0.0076 0.491 
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Figure 3. State estimation of servo system  

a) Position estimate b) Velocity estimate 

 

5.2. Constant and Varying Payload Estimation 

In this study, in addition to designed SMOs and 

Kalman-type observer for velocity estimation of a 

nonlinear servo system, constant or varying parameter 

estimation was also performed. A constant payload is 

mounted to the nonlinear servo system.  

 

 

Figure 4. Constant payload estimation of servo system 

a) Payload estimate b) Payload estimate error 

In numerical results, SSMO with the least root-mean 

squared-error performance in the most accurate velocity 

estimation and EKF performance were compared. Figure 

4 (a) and Figure 4 (b) show the resulting constant payload 

estimation and estimation errors of SSMO and EKF, 

respectively. According to the results, the EKF estimation 

is much oscillatory, but SMO estimation is more smooth 

and more robust to the state change. In addition, designing 

the EKF parameters is much troublesome than SMO when 

the initialization of the error covariance matrix and noise 

covariances are not proper, it causes divergence of 

estimates.   

In the same way, EKF and SMO methods have been 

used to estimate varying payload of the nonlinear servo 

system. The comparisons of payload estimates are 

demonstrated in Figure 5(a) and Figure 5(b), respectively. 

The same design parameters of SMO are utilized with 

constant payload case such that the parameter estimate is 

smooth and has less estimation errors than EKF. Both the 

constant and varying payload estimation results are listed 

in Table 4 with RMSE values. However, varying payload 

case has larger RMSE values than constant payload case 

which is in fact an expected result.   

  

 

 

Figure 5. Varying payload estimation of servo system 

a) Payload estimate b) Payload estimate error 
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Table 4. RMSE values of the payload estimation 

 

 

 

 

   

5.3. Noisy Case of Varying Payload Estimation 

In this subsection, the designed parameter estimation 

methods are compared under an external noise. An 

artificial noise is applied to the measured state, which is 

the position of the payload in simulations. The added 

artificial noise is a zero-mean noise with 10 dB, 20 dB 

and 30 dB signal-to-noise ratios (SNR). Therefore, noise 

variance 𝑅 parameter of the EKF is selected according to 

the SNR and variance of the output. The estimation results 

with 20 dB noise is given in Figure 6(a) and Figure 6(b), 

respectively. 

 

 

 

Figure 6. Estimation results with 20 dB noise 

a) Velocity estimate b) Payload estimate 

 

The application results are obtained when same noise is 

applied to the estimation processes. Table 5 presents the 

performance results with different SNRs. The remarkable 

result is that when the amplitude of the noise decreases, 

SSMO provides the better RMSE result of estimation. In 

contrast, when the amplitude of the noise increases, EKF 

provides better performance of estimation. The noise 

filtering property of the EKF actually surpasses the effect 

of the noise on the estimation.  

 

Table 5. Noise case of payload estimation 

SNR/RMSE SSMO EKF 

10 dB  25.62   8.55 

20 dB   9.24   9.08 

30 dB   7.46   9.37  

 

6. Conclusions 

 

In this paper, different types of SMOs and EKF were 

designed for state and parameter estimation of a nonlinear 

servo system. In the first part, without measurement noise, 

the observers are compared for velocity estimation and 

SSMO provided most accurate estimation results. In the 

second part, without measurement noise, SSMO and EKF 

are compared for the constant and varying payload 

estimation. As before, SSMO provided better estimation 

results. In the final section, artificial noises with different 

SNR are applied to the measurement signal. When the less 

amplitude of noise signal is applied, SSMO estimates the 

states and payload better than EKF. However, EKF 

provides much better estimation results than SSMO for 

large amplitude of noise signals. For the sake of 

generalization, SSMO is a fast and robust observer for 

small noise cases. However, the filtering property of EKF 

has still importance for large noise cases.  
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Case/RMSE SMO EKF 

Constant payload 5.48 7.22 

Varying payload  6.89 9.35 
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