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 Biomechanical analysis using deep learning has been increasingly used in recent studies to identify 

human activity. Wearable sensor data from inertial measurement units (IMUs) is widely used for 

recognizing human activity, but has several drawbacks owing to its high volume and diversity. To 

overcome these issues, the time-domain and power spectral characteristics of IMU data can be 

extracted using digital signal processing (DSP) methods. Our research aimed to investigate time-

frequency analysis (TFA) methods for classifying the spatio-temporal gait characteristics of 

physical walking performed by healthy subjects. In this study, open-source biomechanical sensor 

signal dataset was used. The DSP step was first carried out by segmenting IMU data from the four 

body segments of 22 healthy subjects, and then by applying Continuous Wavelet Transform 

(CWT) and Short Time Fourier Transform (STFT) methods. Moreover, the resultants of linear 

accelerometer signals were applied in a similar manner. The image datasets obtained from this 

step were applied to a deep convolutional neural network (CNN) model to classify human walking 

speed (WS) into three classes: fast, normal, and slow. The performance of the 2D-CNN model and 

the impact of DSP methods using IMU data were evaluated. In conclusion, the highest test 

classification results demonstrated that STFT-all (85.9%), CWT-all (79.3%), and CWT-resAcc 

(76.3%) based CNN models present a remarkably precise and easy-to-implement classification 

problem, with the highest test accuracy, when all IMU channels are subjected to STFT. The 

classification accuracies of 2D-CNN models were compared to commonly used ML models. The 

Deep CNN model is a useful gait evaluation tool for healthy subjects. Furthermore, it can enable 

the diagnosis and phase assessment of gait abnormalities and detect gait biomarkers in 

rehabilitative wearables. 
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1. Introduction 

Adult and geriatric gait disorders have emerged as 

major problems worldwide in the recent years. Declining 

step length, mean acceleration, and velocity can all be 

indications of an abnormal gait. Self-selected walking 

speed (WS), commonly referred to as gait velocity, is a 

simple screening approach that can be used to obtain 

information about human functional status and well-being 

[1, 2]. WS can be used as a functional, useful, and helpful 

vital sign for people, and can be assessed in a similar way 

to how physiotherapists routinely check heart rate, 

ventilation, and skin temperature.  

WS data were collected from two main biomechanical 

sources to recognize the human gait. Some researchers 

have used wearable inertial measurement unit (IMU) 

sensors [3], whereas others have utilized vision-based 

systems (cameras, videos, and images) [4, 5]. Although 

IMU-based devices, such as smartphones and smart 

watches, can be easily integrated and worn on the body to 

analyze human movement, vision-based systems have 

major limitations, such as the requirement for vast 

amounts of information storage and difficulties in camera 

configuration. 

https://doi.org/10.58190/ijamec.2023.44
https://creativecommons.org/licenses/by-sa/4.0/
https://orcid.org/0000-0002-7038-4017
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Recently, wearable sensor signals have been utilized in 

various applications, including sports science, 

rehabilitation, elderly care, biometrics, and the design of 

movement-assistive equipment to automatically recognize 

human activities of daily living [6-10]. Accelerometers, 

gyroscopes, magnetometers, IMUs, electromyography 

(EMG), and IoT-based wearables have been extensively 

employed in human activity recognition (HAR) 

applications to sense complex movement tasks. Walking 

patterns and environmental factors that differ on a daily 

basis affect the walking speed. IMUs, including 

accelerometers and gyroscopes, are widely used in long-

term gait analysis studies. Although a single, low-power 

accelerometer may reduce simultaneous contextual 

information, it may enhance compliance. Additionally, the 

resultant acceleration of multiple IMU sensors worn on the 

body has been utilized in human activity recognition 

studies [11-13]. Huynh and Tran proposed that apply the 

power spectral density (PSD) approach, one of the TFA 

methods, for the resultants of IMU linear acceleration data 

in their study on human fall detection. They revealed 

utilizing daily activity data that the power spectral density 

(PSD) based methodology can detect fall with high 

sensitivity of 98.4% [13].  

The time-varying frequency properties of a variety of 

human activities, which are essential for activity 

recognition, are well-represented by time-frequency 

domain spectrogram and scalogram. Because of its ease of 

implementation, the STFT is commonly utilized in the 

literature [14-16] reviewed to calculate the spectrogram 

with respect to data from EMG and wearable sensors. 

Additionally, Wavelet Transform [17-19] is an effective 

method for creating a power spectral density map from 

human physical activities. Too et al. extracted features of 

EMG signals by applying Wavelet Transform for hand 

gesture recognition and then classified them with ML 

algorithms such as SVM and KNN [17]. In another related 

work, Ozdemir et al. has utilized CNN and transfer 

learning approaches to classify spectral images they 

obtained through applying time-frequency analysis (TFA) 

to the EMG data [16]. 

Data-computing techniques, such as deep learning and 

machine learning algorithms, have demonstrated promise 

when applied to IMU generated gait data for managing 

complicated patterns from data in human movement, 

especially as access to higher processing machines has 

risen [10, 16, 20]. CNN deep learning algorithms are 

frequently employed in human gait recognition. Raw 

signals and time-frequency spectrum images of IMU 

sensors are widely used as CNN inputs [21-24]. The 

methodology of Jung et al. study is based on the study that 

provides reliable multi-classification using deep 

convolutional neural networks and spectrographic 

approach using IMU data to classify pathological gait 

phases without discernible differences [23]. In another 

study, Jung et al. proposed an effective approach for gait 

recognition of three different groups using 2D-CNN based 

wearable IMU sensors, trained with gait spectrograms 

obtained from time-frequency domain analysis of raw 

acceleration and angular velocity data. This classifier 

showed an accuracy of 93.02% in classifying athlete, 

normal foot and deformed foot groups [24]. The main 

contribution on human gait recognition of this study is the 

development of a 2D-CNN model inspired by [23] for the 

use of IMU signal TFA images.  Another contribution to 

this issue is to investigate the usability of TFA images 

obtained from IMU linear acceleration resultant, inspired 

by [16], in HAR studies by applying them to the developed 

2D-CNN model. 

In this study, our aims are (1) to classify the time domain 

(TD) and time-frequency domain (TFD) images of IMU 

sensor signals with 2D-CNN, (2) to classify the time 

domain and time-frequency domain images of the resultant 

linear accelerations of these signals with 2D-CNN, (3) 

evaluate the contribution of learning models to human gait 

recognition performance and (4) compare the accuracy of 

traditional machine learning models with the proposed 2D-

CNN models. The result of our study indicates that the 

most accurate results may be obtained with a chosen image 

subset from STFT time-frequency domain representations 

when they are fed into a deep CNN classifier with IMU 

signals from all channels. The methodology used in this 

study can serve as a template for future important 

strategies for the comprehensive identification and phase 

assessment of gait disorders, in addition to identifying gait 

indicators for supportive and therapeutic wearable 

technologies. The findings of this study may also 

contribute to forecasting the progress of gait disorders by 

applying deep learning methods from the scientific field to 

the field of biomedicine. 

2. Methods 

In this study, we utilized the Camargo et al. open-

source dataset [25], which consisted of lower-limb 3D 

biomechanical and wearable data. Time-frequency 

analysis methods were then used to classify the IMU 

sensor data. Finally, the 2D-CNN model utilizes IMU data 

to classify the obtained human gait features and predict the 

walking speed. 

In this dataset, the human lower limbs are handled 

in level-ground locomotion mode at three distinct walking 

speed states employing data from IMU sensors. The 

dataset consists of 22 healthy subjects (age 21 ± 3.4 years, 

3 females, and 19 males, mass 68.3 ± 10.83 kg, height 1.70 

± 0.07 m) participating in the study. Each subject 

performed a total of 30 level-ground walking trials for 

each of the three self-selected speeds—fast (F), normal 

(N), and slow (S)—in relation to each subject speed. The 

linear velocity of the pelvis was used as a reference to 
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calculate the average steady-state walking speed of each 

participant. According to the average pelvis velocity of all 

subjects, slow, normal, and walking speeds were 1.17 ± 

0.21 m/s, 0.88 ± 0.19 m/s, and 1.45 ± 0.27 m/s, 

respectively. Four 6-axis IMUs were placed unilaterally on 

the right side of the subjects. The IMU sensor three-axis 

gyroscope and accelerometer were used to assess the 

rotational displacement and linear acceleration, 

respectively. 

2.1. Biomedical Signal Processing 

The IMU data were collected from the foot (Ft), shank 

(Sh), thigh (Th), and trunk (Tr) of the human lower limb 

at a sampling frequency of 200 Hz. Figure 1 shows the 24-

channel IMU data consisting of the accelerometer (Accx, 

Accy, and Accz) and gyroscope (Gyrox, Gyroy, and Gyroz) 

components.  

 
(a) (b) (c) (d) 

Figure 1. IMU time series signals of 5 sn, (a) Foot sensor, 

(b) Shank sensor, (c) Thigh sensor, (d) Trunk sensor. 

A rectangular walking path was set up to collect the 

IMU signals. The signal is automatically split so that each 

signal's midpoint is equally spaced from its starting point 

and ending point to avoid the impact of interruptions and 

discontinuities at the turning points. These 24x500 signals, 

extracted from the raw IMU data, were converted into a 

data set. Additionally, a 1x12000 vector was generated by 

sequentially adding each channel, and the CWT and STFT 

transformations were used to obtain the signal power 

spectrum in the frequency-time domain. The CNN input 

datasets were created from the spectral images in Figure 2. 

 

Figure 2. Raw IMU signal segmentation and image datasets. 

In addition to the linear acceleration and angular 

velocity parameters, the resultant linear acceleration (Res-

Acc), calculated by taking the square root of the linear 

accelerations along the x-, y-, and z-axes, is also utilized 

when machine learning and deep learning-based human 

motion pattern recognition studies conducted using IMU 

sensors are reviewed in the literature. As shown in Figure 

3, the resulting linear accelerations of the foot, thighs, 

thighs, and trunk were recorded in the segmented signal, 

and an image dataset was created from the obtained 4 × 

500 matrices. Furthermore, a 1 × 2000 vector was created 

using the end-to-end connection of the elements in each 

channel. Two separate datasets were generated by 

applying CWT and STFT transformations to obtain the 

power spectra of the resultant linear accelerations in the 

TFD. 

 

Figure 3. Res-Acc IMU signal segmentation and image 

datasets. 

Figure 4 shows sample images of the datasets created 

after automatic segmentation and walking speed classes. 

In each dataset, there were 230, 221, and 229 images for 

the fast, normal, and slow walking-speed classes, 

respectively. The down-sampling method was applied in 

order to overcome unbalanced dataset problem. There 

were 220 samples in each class after down-sampling, for 

all classifier models included in the study. 

 

Figure 4. Sample images from CNN input datasets. 
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2.2. Deep Convolutional Neural Networks 

The training and test datasets for the CNN model 

were randomly divided into two groups: 80% and 20% of 

the input dataset, respectively. The essential model 

parameters for the training phase of the CNN model had 

the greatest impact on the training and test accuracy. The 

model parameters were optimizer ‘adam,’ initial learning 

rate 10e-3, maximum epochs 10, and mini-batch size 64. 

The CNN model was developed using the parameters, and 

the highest test accuracy was achieved by experimenting 

with various parameter combinations. 

Using the MATLAB (The MathWorks, R2021b) 

Deep Network Designer Toolbox, the CNN architecture is 

shown in Figure 5. The deep CNN architecture consisted 

of an input layer (Ly), three feature extraction layers, and 

an output layer. There were two convolution (Conv) 

layers, a linear rectification unit (ReLU) layer, and a batch 

normalization (Btch-Norm) layer for each feature 

extraction layer. A feature map is created by processing 

the images in the input layer, which consists of pixel 

values, with filter matrices comprising a series of weights 

in the convolution layer. The batch normalization layer 

forms a more structured model of neurons and improves 

performance during training, whereas the ReLU layer 

determines the activation function of the deep neural 

network. 

 

Figure 5. Deep-CNN model architecture. 

The max pooling (Max-pool) layer decreases the 

weights in the deep CNN architecture and analyzes their 

applicability. Subsequently, to avoid over fitting during 

training, a dropout layer was implemented to eliminate 

excessive neurons. A fully connected layer was 

implemented to generate an input matrix resembling the 

inputs in a traditional neural network. The output layer, 

which is a classification layer, and the softmax layer, 

which has an activation function for categorical 

classification, are the last two layers. The layers and 

weights of the CNN architecture are listed in detail in 

Table 1. 

Table 1. Proposed Deep CNN model layers and weights. 

Ly 
Type Subtype Configuration Activation 

1 
Input layer Image input 64 x 64 x 3 images 

with ‘zerocenter’ 

normalization 

64 x 64 x 3 

2 
Feature 

extraction 

layer-1 

Conv 16 3 x 3 

convolutions with 

stride [1 1] and 

padding ‘same’ 

64 x 64 x 16 

3 
ReLU ReLU 64 x 64 x 16 

4 
Conv 16 3 x 3 

convolutions with 

stride [1 1] and 

padding [1 1 1 1] 

64 x 64 x 16 

5 
ReLU ReLU 64 x 64 x 16 

6 
Btch-Norm Batch normalization 

with 16 channels 

64 x 64 x 16 

7 
Feature 

extraction 

layer -2 

Conv 32 3 x 3 

convolutions with 

stride [1 1] and 

padding ‘same’ 

64 x 64 x 32 

8 
ReLU ReLU 64 x 64 x 32 

9 
Conv 32 3 x 3 

convolutions with 

stride [1 1] and 

padding [1 1 1 1] 

64 x 64 x 32 

10 
ReLU ReLU 64 x 64 x 32 

11 
Btch-Norm Batch normalization 

with 32 channels 

64 x 64 x 32 

12 
Feature 

extraction 

layer -3 

Conv 32 3 x 3 

convolutions with 

stride [1 1] and 

padding ‘same’ 

64 x 64 x 32 

13 
ReLU ReLU 64 x 64 x 32 

14 
Conv 32 3 x 3 

convolutions with 

stride [1 1] and 

padding [1 1 1 1] 

64 x 64 x 32 

15 
ReLU ReLU 64 x 64 x 32 

16 
Btch-Norm Batch normalization 

with 32 channels 

64 x 64 x 32 

17 
Max-pool 2 x 2 max pooling 

with stride [1 1] 

padding ‘same’ 

64 x 64 x 32 

18 
Classification 

layer 

Dropout 50% dropout 64 x 64 x 32 

19 
Fully 

connected 

3 fully connected 

layer 

1 x 1 x 3 

20 
Softmax softmax 1 x 1 x 3 

21 
Output layer Classification ‘fast’, ‘normal’ and 

‘slow’ 

1 x 1 x 3 

2.3. Machine Learning Algorithms 

The time series and time-frequency domain 

features of the IMU signal are computed and used as input 

to the machine learning algorithms. The signal time series 

features employed in this case are the mean, maximum, 
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standard deviation, minimum, and area under the curve 

(AUC), whereas the TFD features are the maximum, 

skewness, kurtosis, and AUC that calculate the Fast 

Fourier Transform (FFT) of the signal. Three machine 

learning approaches that are often utilized to recognize 

human activity were applied using the MATLAB (The 

MathWorks, R2021b) Classification Learner Toolbox: 

Quadratic Support Vector Machine (QSVM), Wide Neural 

Networks (WNN), and Ensemble Subspace K-nearest 

Neighbours (ESKNN). All ML algorithms performed 

repeated 10-fold cross validation in order to prevent over-

fitting. Additionally, feature input dataset was randomly 

separated 80%-20% training and test split and analysed 

using these ML algorithms. 

2.4. Classification Performance Metrics 

Performance metrics, such as the confusion matrix 

(CM) and accuracy, were used to determine the 

performance of the analysed deep CNN classifiers on the 

training and test sets. True Negative (TN) refers to a 

sample that was correctly classified as negative (N), 

whereas True Positive (TP) refers to a sample that was 

correctly classified as positive (P). False-negative (FN) 

samples are those that are correctly classified as positive 

but are actually in the negative class, as opposed to false-

positive (FP) samples, which are those that are correctly 

classified as positive but are actually in the negative class. 

The binary class confusion matrix is presented in Table 

2(a), and the following quantitative performance metrics 

can be derived: 

• Accuracy: Percentage of samples correctly 

classified among all samples in the test set. 

• Precision (for the positive class): The 

number of samples that the model predicts 

will be in the positive class, which is 

included in that group. 

• Specificity: The number of samples in the 

dataset where the negative class was 

correctly estimated to include all samples. 

• Recall (for the positive class): A measure of 

the number of samples that actually belonged 

to the positive class was correctly predicted. 

• F1-Score (for positive class): Harmonic 

mean of recall and precision scores for the 

positive class. 

Table 2. CM and performance metrics of binary classification 

(a), multiple classification (b). 

 

 True class  

 

P
re

d
ic

te
d

 c
la

ss
 

 P N 

P TP FP 

N FN TN 

  

Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

Specificity 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Precision 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F-score 2 𝑋 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑋 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 

 

(a) 

 

 True class  

 

P
re

d
ic

te
d
 c

la
ss

 

 F N S 

F a b c 

N d e f 

S g h j 

  

 

 
Class TP TN FP FN 

F a e+f +h+j b+c d+g 

N e a+c+g+j d+f b+h 

S j a+b+d+e g+h c+f 

 

 

(b) 

A transformation is applied while calculating the 

multiple classification performance metrics, as indicated 

in Table 2(b). For the class-based evaluation, the TP, TN, 

FP, and FN values were computed. Multiple classifications 

are implemented using the performance metrics listed in 

Table 2(a). 

3. Results 

In this study, different image sets obtained from 

the proposed 2D-CNN classifier and TD and TFD analysis 

methods were compared in terms of classification 

performance metrics. Table 3 lists the training (a) and test 

(b) confusion matrices of the model with all the IMU 

signals, and the training (c) and test (d) confusion matrices 

of the model with the IMU linear acceleration resultant. 

The number of samples for each walking speed estimated 

by the 2D-CNN models is shown in the confusion matrices 

in Table 3. Actual walking speed labels for examples are 

also shown in the columns. The blue cells in each row of 

the table showed the TP value for each WS class. The FN 

value for a given WS class was the sum of the values in all 

cells in a row except the blue cell. 

Table 3. CMs of the 2D-CNN model with all the IMU signals (a) 

training set, (b) test set. CMs of the 2D-CNN model with the IMU 

linear acceleration resultant (c) training set, (d) test set.    

  True WS  
 

True WS 
 

True WS 
 

P
re

d
ic

te

d
 W

S
 

 F N S 

F 157  5  14  
N 18  97  61  
S 3  4  169   

 F N S 

F 158  11  7  
N 9  140  27  
S 1  1  174   

 F N S 

F 170  6  0  
N 0  175  1  
S 1  13  162   

 Raw-all CWT-all STFT-all  

(a) 

 

 True WS  
 

True WS 
 

True WS 
 

P
re

d
ic

t

ed
 W

S
  F N S 

F 29  7  8  
N 12  10  22  
S 1  6  37   

 F N S 

F 33  9  2  
N 6  19  19  
S 0  5  39   

 F N S 

F 35  8  1  
N 5  34  5  
S 1  8  35   

 Raw-all CWT-all STFT-all 
 

(b) 

 

 True WS  
 

True WS 
 

True WS 
 

P
re

d
ic

t

ed
 W

S
  F N S 

F 163  4  9  
N 25  117  34  
S 3  3  170   

 F N S 

F 132  31  13  
N 1  162  13  
S 2  9  165   

 F N S 

F 174  0  2  
N 2  166  8  
S 0  0  176   

 Res-Acc CWT-resAcc STFT-resAcc 
 

(c) 

 

 True WS  
 

True WS 
 

True WS 
 

P
re

d
ic

t

ed
 W

S
  F N S 

F 30  9  5  
N 14  9  21  
S 2  4  38   

 F N S 

F 24  17  3  
N 5  30  9  
S 2  11  31   

 F N S 

F 32  8  4  
N 15  18  11  
S 1  11  32   

 Res-Acc CWT-resAcc STFT-resAcc 
 

(d) 
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Table 3 (a-b) demonstrates that the STFT-all 

model is the highest in the case of including all IMU 

channels when TP values are evaluated on a class basis, 

followed by the CWT-all model, whereas Raw-all model 

has the lowest TP value. Table 3 (c-d) lists that the CWT-

resAcc model is the highest for the resultant accelerometer 

channels of the wearable IMU sensors when TP values are 

evaluated on a class basis, followed by the STFT-resAcc 

model, whereas Res-Acc model has the lowest TP value. 

Table 4.  Classification performance metrics of 2D-CNN 

models.   
 

Accuracy Specificity Precision Recall F-

score 
 

fast 0.788 0.852 0.690 0.659 0.674 R
a
w

-a
ll 

normal 0.644 0.852 0.435 0.227 0.299 

slow 0.720 0.659 0.552 0.841 0.667 

average 0.717 0.788 0.559 0.576 0.547 

fast 0.871 0.932 0.846 0.750 0.795 C
W

T
-a

ll 

normal 0.705 0.841 0.576 0.432 0.494 

slow 0.803 0.761 0.650 0.886 0.750 

average 0.793 0.845 0.691 0.689 0.680 

fast 0.886 0.932 0.854 0.795 0.824 S
T

F
T

-a
ll 

normal 0.803 0.818 0.680 0.773 0.723 

slow 0.886 0.932 0.854 0.795 0.824 

average 0.859 0.894 0.796 0.788 0.790 

fast 
0.773 0.818 0.652 0.682 0.667 

R
e
s-A

c
c
 

normal 
0.636 0.852 0.409 0.205 0.273 

slow 
0.758 0.705 0.594 0.864 0.704 

average 
0.722 0.792 0.552 0.583 0.548 

fast 
0.795 0.920 0.774 0.545 0.640 C

W
T

-r
e
sA

c
c
 

normal 
0.682 0.682 0.517 0.682 0.588 

slow 
0.811 0.864 0.721 0.705 0.713 

average 
0.763 0.822 0.671 0.644 0.647 

fast 
0.788 0.818 0.667 0.727 0.696 

S
T

F
T

-

r
e
sA

c
c 

normal 
0.659 0.784 0.486 0.409 0.444 

slow 0.795 0.830 0.681 0.727 0.703 

average 0.747 0.811 0.611 0.621 0.614 

The test sets of 2D-CNN models multiple 

classification performance metrics are listed in Table 4. On 

a class basis, the "normal class" has the lowest 

performance, and the "fast class" has the highest 

performance. The performance metrics of the IMU are 

listed as STFT-all, CWT-all, and Raw-all, from high to 

low when the macro average values are compared. The 

multiple classification performance metrics for the 

resultant linear accelerometer of the wearable IMU 

sensors, on a class basis, the "normal class" has the lowest 

performance, and the "fast class" has the highest 

performance. The performance metrics of these 2D-CNN 

models are listed as CWT-resAcc, STFT-resAcc, and Res-

Acc, from high to low, when the macro-average values are 

compared. 

 

Table 5. CMs of the ML model with all IMU signals (a) 10-fold 

cross-validation (CV), (b) 80%-20% random train-test split (RS). 

 

 True WS  
 

True WS 
 

True WS 
 

P
re

d
ic

te
d
 

W
S

 

 F N S 

F 174  45  1  
N 35  162  23  
S 2  44  174   

 F N S 

F 164  50  6  
N 54  118  48  
S 7  42  171   

 F N S 

F 180  37  3  
N 40  153  27  
S 2  31  187   

 SVM-CV KNN-CV ANN-CV 
 

(a) 

  True WS  
 

True WS 
 

True WS 
 

P
re

d
ic

te
d
 

W
S

 

 F N S 

F 35  9  0  
N 8  31  5  
S 0  10  34   

 F N S 

F 29  14  1  
N 11  22  11  
S 1  10  33   

 F N S 

F 34  9  1  
N 6  34  4  
S 2  6  36   

 SVM-RS KNN-RS ANN-RS 
 

(b) 

Table 5 lists the classification confusion matrices 

of all IMU signals using conventional ML models. 10-fold 

cross validation (CV) and 80%-20% random train-test split 

(RS) methods were used in order to determine the training 

set in the ML model. When the confusion matrices to 

which the 10-fold CV is applied as listed in Table 5(a) are 

examined, it is seen that the highest TP value is the ANN-

CV model and the lowest is the KNN-CV model. The 

ANN-RS model had the highest TP value, while the KNN-

RS model had the lowest, depending on the evaluation of 

the confusion matrices in Table 5(b), when the 80%-20% 

random train-test split approach is used. Likewise, when 

the classification accuracies of the ML models listed in 

Table 6 are compared, the ANN model, in which the 10-

fold cross validation approach was applied, reached the 

highest accuracy with 0.788, while the KNN model, in 

which the random split was applied, reached the lowest 

accuracy with 0.636. 

Table 6.  Classification performance metrics of ML models. 
 

Accuracy AUC-ROC  
SVM 0.773 0.94 

C
V

 KNN 0.686 0.87 

ANN 0.788 0.91 

SVM 0.758 0.94 

R
S

 KNN 0.636 0.83 

ANN 0.788 0.87 

4. Discussion 

This study proposed a new time-frequency analysis 

approach that can multi-classify the ground level gait of 

healthy individuals according to three different walking 

speeds. Without traditional kinematic gait assessment 

metrics such as spatial and temporal gait parameters, both 

raw and spectral images of the resultant of a 5 s duration 

gait signal and its linear accelerations were used as input 

data for efficient classification. Time-frequency analyses 

have been widely applied to ECG [26], radar [14], and 

speech signals [27] represented in the time-frequency 

domain have been trained with DCNNs, producing 

important results especially for speech recognition. 

However, its applications in gait classification are quite 
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limited. The study of Jung et al. is the first to use spectral 

analysis for biomechanical assessment of gait with the 6-

DOF IMU and validate its utility for reliable classification 

of pathological gait with no observable difference [23]. It 

is noteworthy that their proposed 2D-CNN model, which 

is trained using spectrograms of IMU signals, provides 

100% accuracy classification without requiring much 

manual labour, time-consuming and resource-intensive 

processes and specialized knowledge. In addition, their 

proposed 2D-CNN model has reduced training and testing 

time, since it is simpler than other existing deep learning 

models.  

The classification performance metrics of each 

model were addressed independently to compare the time-

frequency analysis techniques. First, a dataset was created 

using time-amplitude images of the signals, which 

included all the IMU sensor channels. In addition, by 

utilizing the STFT and CWT on these signals, datasets 

were generated from the spectral images. The dataset 

obtained from the images of the time-amplitude signals 

created by the resultant linear accelerations was then 

subjected to the same procedure. Then, by applying 

transformations via STFT and CWT to the resultant linear 

accelerations, datasets were produced from the spectral 

images. Besides, the features [10, 28, 29] that widely used 

HAR studies extracted from IMU time series signals were 

classified with ML models and compared with deep 

learning models. 

The training and test set classification performance 

of each model is shown in Figure 6. With regard to these 

performance metrics, it can be seen that the models that 

apply STFT to models that include all IMU channels and 

those that apply CWT to models that use linear 

components perform well. For the training and test sets, 

the STFT-all model with the best classification accuracy 

was found to be 97.3% and 85.9%, respectively. The 

results for the other two models with high classification 

accuracy, CWT-all and CWT-resAcc, were 79.3% and 

76.3%, respectively, for the test data. 

 

Figure 6. Comparison of the deep 2D-CNN model 

classification performance. 

The classification performance of 2D-CNN and ML 

models was evaluated by using the confusion matrices 

listed in Tables 3 and 5. The STFT-all model, as shown, 

provides fewer false positive and false negative scores for 

both the training and test data. Tables 4 and 6 provide a list 

of each model's accuracy, precision, specificity, recall, and 

F1 scores for training and test data, which were calculated 

using the respective confusion matrices. Furthermore, the 

STFT-all model outperformed the CWT-all and CWT-

resAcc models in terms of accuracy and specificity. 

With the same dataset we used in the study, Camargo et 

al. classified according to walking speed with classical 

machine learning algorithms. In estimation of walking 

speed, they found the lowest RMSE error rate in 

classification of fast, slow and normal groups as 0.04 ± 

0.01 m/s in ML-based SVM models. In addition, they 

showed in their study which sensor type and placement are 

important for different walking area conditions, 

mechanical sensors such as IMU and GON are more 

decisive for classification than EMG sensors, and shank 

IMU sensors have higher accuracy in estimating walking 

speed [28]. Similar to the gait parameters in this study, 

Bhakta et al. evaluated the effectiveness of multiple 

machine learning algorithms in determining the walking 

speed of subjects with transfemoral amputation in their 

study, which aimed to determine the walking speed on a 

robotic prosthesis in real time. They confirmed low error 

performance with 0.014±0.001 m/s RMSE, especially in 

determining walking speed for dynamic situations [30]. 

 

Figure 7. Comparison of 2D-CNN and ML models 

classification accuracies. 

These outcomes highlight the possible applicability of 

walking speed as biomechanical identifiers, this 

functionality could be broadened via using the STFT-CNN 

model recommended in this study. Gait recognition 

approaches comprised the use of spectrogram, time series 

signal, and scalogram. Figure 7 presents that when using 

spectrogram images from the TFA of all IMU channels 

and CNN to classify gaits, the accuracy was 85.9% 

however, when using machine learning to classify gaits, 

and the accuracy was 78.8%. This outcome can be 

attributed to the efficiency of the gait spectral image in 

accurately handling both the temporal and spatial gait 

parameters, as well as the feasibility of STFT-CNN based 

classification. 
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5. Conclusions 

In conclusion, our deep CNN model for recognizing 

human gait offers different insights into the changes in 

temporal gait trends in healthy adults by executing three 

distinct walking speed experiments. This study contributes 

to the development of biomedical signal processing 

methods that can be used to recognize human lower limb 

gait using a variety of biomechanical parameters of 

wearable sensors through deep learning. We found that the 

accuracy of deep learning classification was barely 

affected by the time-frequency domain transformation 

when applied to the STFT and CWT models, including all 

IMU channels when compared to findings from other 

image datasets. 

The method of study could be the basis for promising 

advances advancements in comprehensive gait 

abnormalities diagnosis and stage assessment, as well as 

the detection of gait biomarkers for wearable assistive and 

rehabilitation systems. In further research, the same lower 

limb biomechanics dataset would be used to develop deep 

learning models such as transfer learning and LSTM to 

recognize human activity including ramp and stair 

movement. To develop deep learning models, it is also 

intended to combine with the goniometer joint angles 

dataset and the IMU dataset. 
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