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Abstract: Solute transport inside pore system occurs due to advection and diffusion which are the important mechanisms of contaminant 

transport in porous medium. Analytical solutions of one-dimensional advection-diffusion equation (the coefficient of second order space 

derivative being temporally dependent) are obtained in a finite domain for two sets of pulse type input boundary conditions. Initially the 

domain is not solute free. It is supposed uniformly distributed at the initial stage. The Laplace transform technique is used with the help 

of new space and time variables. The solutions are graphically illustrated and compared solute distribution  for finite and semi-infinite 

domain. 
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1. Introduction 

Many examples of porous material  are seen in  everyday  of life 

and environment. Soil, paper towels, Textiles, leather and tissue 

paper are highly porous. There are many examples where porous 

media play an important role in science and technology. The most 

important area of science and technology that to great extent 

depend on the properties of porous media is hydrology, which 

relates to water movement in earth and sand structures such as 

dame, flow to wells from water bearing formations, intrusion of 

sea water in coastal area and nutrient transport in soil. 

Contaminant (e.g. pesticides, chemicals, fertilizers, hygienic 

substance etc.) transport in subsurface, in soil and its analysis is 

complicated due to the complex  behaviour of porous medium. 

Knowledge of various physical, chemical, and biological 

processes, which affect the movement of subsurface 

contaminants, is necessary for soil, blood, aquifer and 

groundwater remediation research and practice. From several 

decades the uncontrolled use of pesticides in agriculture, human 

and factory activities cause serious damages the environment and 

affected flora-fauna (forest, animals, human body etc.), soil and 

groundwater. Contaminant behaviours in the soil/aquifer system 

are subject to many processes. The study of contaminant transport 

requires the fundamental knowledge of many of the basic 

principle of physics and mathematics. A large number of 

theoretical and mathematical models have been developed and 

deployed to study the hydrodynamic processes involved in 

groundwater and surface water. 

In previous literatures, the longitudinal dispersion coefficient 

have been considered either linearly or squarely proportional to 

the fluid velocity. Banks and Jerasate [1] observed well 

agreement between concentration distributions and theoretical 

values except at very low concentrations. Ogata and Banks, Lin, 

Al-Niami and Rushton [2-4] obtained analytical solutions for 

dispersion in a porous media. Harleman and Rumer [5] obtained 

solution for longitudinal and lateral dispersion in an isotropic 

porous medium i.e. the permeability does not change with 

direction. Bruch [6] derived a series of two-dimensional 

dispersion problems in one and two layered porous medium. The 

experimental results were compared with theoretical and 

numerical solutions both of which describe the two-dimensional 

dispersion of a miscible. Most of such works have been compiled 

by van Genutchen and Alves [7].  Chen and Liu [8] dealt with 

solute transport form an injection well into an aquifer. A 

macroscopic boundary condition of the Cauchy type (the third 

type) can be formulated at the well-aquifer interface if the mass 

balance principle is invoked. Tracy [9] first gave some simple 

one-dimensional solutions. Next, by use of a transformation, the 

nonlinear partial differential equation is converted to a linear one 

for a specific form of the moisture content vs. pressure head and 

relative hydraulic conductivity vs. pressure head curves. This 

allows both two and three dimensional solutions to be derived.  

Aral and Liao [10] examined solutions of two dimensional 

advection-dispersion equation with time dependent dispersion 

coefficients and demonstrated the time and space dependent 

nature of the dispersion coefficient in subsurface contaminant 

transport problems. They developed instantaneous and 

continuous point source solutions for constant, linear, asymptotic, 

and exponentially varying dispersion coefficients. Ataie-Ashtiani 

et al. [11] studied the influence of tidal fluctuation effects on 

groundwater dynamics and contaminant transport in unconfined 

coastal aquifers. Sander and Braddock [12] obtained analytical 

solutions of advection-dispersion equation in one-dimension with 

scale and time dependent dispersivities. In order to perform a 

general analysis of groundwater contaminant transport,  Sirin [13] 

considered (i) non-divergence-free pore flow velocity since non-

divergence-free pore flow velocity occurs during density 

department flows, (ii) unsteady pore flow velocity. Chen and Liu 

[14], studied an analytical solution for one-dimensional 

advective-dispersive transport in finite spatial domain with time-

dependent inlet conditions including constant, exponentially 

decaying and sinusoidally periodic input functions and 

demonstrate the applicability of solution. Yadav et al. and Jaiswal 
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et al. [15-16] obtained analytical solutions for solute dispersion in 

finite porous media. Sharma [17] obtained solution of an 

advective dispersive transport equation, including equilibrium 

sorption and first-order degradation coefficient in the fracture and 

simultaneously a diffusive transport equation for porous media 

using numerical implicit finite difference method and discussed 

numerical results of various temporal moments have been 

predicted to investigate the behaviour of reactive solute in the 

fracture.  

In the present study, advection-diffusion equation is considered 

one dimensional. The solute dispersion parameter is considered 

temporally dependent along uniform flow in longitudinal finite 

domain of length,  . The input source condition is assumed to be 

of pulse type, introduced at the origin of the domain. The second 

condition is considered at the other end of the domain which is of 

second type (flux type) of homogeneous nature. The domain is 

assumed initially not solute free i.e. the domain is supposed to 

have uniformly distributed solutes at the initial stage. Laplace 

transformation technique is used to getting the analytical 

solutions. 

2. Mathematical  Model of the Problem  

For the analyses presented here,  the governing equation for a 

solute transport model represent a mathematical description of the 

assumed transport mechanisms and processes in ideal case which 

include the effect of adsorption, in one dimension may be written 

as,  

1
( , ) ( , )

p

p

nC F C
D x t u x t C

t n t x x

   
  

   

 
 
 

   (1) 

 where C is the solute concentration in the liquid phase and F is 

the concentration in the solid phase. As is generally known, the 

mass transport equation uses hydrodynamic dispersion, which is 

the combination of mechanical dispersion and diffusion, however 

molecular diffusion is negligible due to very low seepage 

velocity.  

 The advection-diffusion Eq. (1) has served as the main 

theoretical framework for modelling and transport of solute in 

porous media and for addressing critical environmental issues or 

waste disposal operations during the last few decades Jury and 

Fluhler [18]-. In Eq. (1), D  and u  may be constants or functions 

of time or space. 
p

n  is porosity. Lapidus and Amundson [19] 

considered two cases, namely, 

1 2

nF k C k       (2) 

 and 

1 2

nF
k C k

t


 


     (3) 

respectively, equilibrium and non-equilibrium isotherm between 

the concentrations in the two phases, where k1 and k2 are 

empirical constants of the medium. The isotherm is linear if  n=1, 

and is non-linear if n>1. For simplicity, the former relationship is 

adopted in the present analysis. This assumption is generally 

valid when the adsorption process is fast in relation to the 

ground-water velocity Cherry et al. [20]. Using Eq. (2) in Eq. (1) 

for n=1we may get linear advection-diffusion equation, 

 1 2
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where 

1

1
1

p

p

n
R k

n


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The term on the left side of the equal sign of Eq. (4b) indicate the 

retardation factor  R  and change of concentration in time, the 

first two terms on the right side describe hydrodynamic diffusion 

and flow velocity. The dimensions of each term of Eq. (4b) i.e. 

dimension of diffusion is 
2 1( )L T 

and of dimension velocity is
1( )LT 

, respectively. If both the parameters are independent to 

space variable x  and time variable t , then these are called 

constant diffusion and uniform flow velocity respectively.  

Let us write 1R  , 0 1( , ) ( , )D x t D f x t  and 0 2( , ) ( , )u x t u f x t , 

the linear advection-diffusion partial differential equation in one 

dimension in general form is, 

 
0 1 0 2( , ) ( , )
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t x x
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 Introducing a new independent variable 

 1 ,

dx
X

f x t
   or  

1

1

( , )

dX

dx f x t
     (6) 

which in case of temporally dependent dispersion along a 

uniform flow, i.e., for 

 1 , ( )f x t f mt    and  2 ( , ) 1f x t    (7) 

where m  is a unsteady coefficient whose dimension is inverse of 

the dimension of t , i.e. of dimension 
1( )T . Thus ( )f mt  is 

expression in non-dimensional variable. Function is chosen such 

that ( ) 1f mt  , for 0m   or 0t  . Thus Eq. (5) will assume the 

form 

2

0 02
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t X X

  
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    (8) 

where   

( )

x
X

f mt
        (9) 

Now the time dependent coefficient on left hand side may be got 

rid of by introducing another new time variable, nT (Crank [21])  

0
( )

t

n

dt
T

f mt
       (10) 

The partial differential equation (8) reduces into that with 

constant coefficients as 

2
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Further using transformations 
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The advection-diffusion equation (11) reduces to a diffusion 

equation in terms of new dependent variable ( , )nK Z T , which is 

2

0 2

n

K K
D

T Z

 


 
     (14) 

3. Analytical Solutions  

To proceed further, let us consider initial and boundary 

conditions for (5) in a finite longitudinal domain of length L .The 

analytical solutions are obtained for two cases. The input source 

is introduced at the origin of the domain. In both cases second 

boundary condition of flux type and homogeneous nature is 

imposed at the extreme end x L of the domain. In case of pulse 

type input source, the domain is assumed to be not solute free, 

instead it is assumed to uniformly polluted by solute particles.  

3.1. Case-I  Pulse type input concentration of uniform nature 

If the source of the input concentration remains uniform up to 

certain time period and after its elimination forever the input 

becomes zero. This type of condition is defined by first type or 

Dirichlet boundary condition. For uniform pulse type input 

concentration the initial and boundary conditions are, 
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These conditions in terms of new space and time variables may 

be written as  
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and  

0

02

K u
K

Z D


 


; 0Z Z , 0nT     (20) 

respectively. Applying Laplace transform on the diffusion 

equation (14) and using initial condition (18), we may get 
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The boundary conditions (19) and (20) become 
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Thus the general solution of equation (21) may be written as 

or 
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Using conditions (22) and (23) on the above solution, we get 

values of 1c and 2c as 
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and 
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Thus the solution of Eq. (24) in the Laplace parameter may be 

written as 
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Applying inverse Laplace transform on it, we get ( , )nK Z T  and 

using back transformation (13), we may get the desired analytical 

solution in ( , )nC Z T  of the initial and boundary value problem (5), 

(15), (16) and (17), as follows 
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/ ( )Z x f mt , 0 / ( )Z L f mt  and nT  may be obtained from 

transformation (10).  

3.2. Case-II  Pulse type input concentration of varying nature 

It may happen that if the input concentration continuously 

uniform up to certain time period and after its elimination forever 

the input becomes zero. But due to human, industries and some 

other responsible activities, the source of input concentration 

increases till certain time period, beyond that it starts decreasing, 

when source of concentration is eliminated forever. The type of 

condition defined by third type of boundary condition and is 
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known as Cauchy or mixed boundary condition. Thus varying 

pulse type input condition may be written as, 
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Using the expressions i.e., 0( , ) ( )D x t D f mt  and  0( , )u x t u , 

the above condition may be written as 
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It may be written in terms of ( , )nK Z T  as 
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where 
2 2

0 0/ 4u D 
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Applying Laplace transformation on equation (32), the input 

boundary condition is reduced to 
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Using conditions (33) and (23), we get value of 1c and 2c  from 

equation (24) are 

  

 

2

0 0 0

1 2

2

0 0 0

1 exp ( )

( )( ) 1 exp 2 /

n iu C p T C
c

p
D p p Z p D

p




 



    
 

   
                (34) 

  

 

2

0 0 0 0 0

2 2

2

0 0 0

1 exp ( ) exp (2 / )

( )( ) 1 exp 2 /

n i

p
u C p T C Z p D

p
c

p
D p p Z p D

p







 



           
   

           (35) 

Thus the solution of Eq. (24) in the Laplace parameter may be 

written as 
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Applying inverse Laplace transform on it, we get ( , )nK Z T  and 

using back transformation (13), we may get the desired analytical 

solution in ( , )nC Z T  of the initial and boundary value problem 

(5), (15), (16) and (17), as follows 
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   (38) 

/ ( )Z x f mt , 0 / ( )Z L f mt  and nT  may be obtained from 

transformation (10).  

4. Numerical Results and Discussion 

Two analytical solutions (28) and (37) are obtained for the 

temporally dependent diffusion of uniform pulse type and varying 

pulse type input sources, respectively, along uniform flow. 

Concentration values are evaluated from these solutions in the 

finite domain 0 1x  , (i.e., 1.0L  km is chosen) at times t (yr)

0.1 , 0.4 , 0.7  and 1.0 , for input values  0 1.0C  , 0 0.11u 

(km/yr), 0 0.21D   (km2/yr)  and 
1(yr) 0.1m   .Figure (1a) 

shows the concentration distribution along the finite domain of a 

pulse type uniform input concentration, in the time domain 0t t

. The time of elimination of the source is chosen as 0 1.2t   (yr). 

The four curves represent the solute concentration for 

( ) exp( )f mt mt   at (yr) 0.1t  , 0.4, 0.7, 1.0. The figure (1b) 

represent the solute concentration for same ( )f mt , at (yr) 1.3t 

, 1.6, 1.9 and 2.2 in the time domain 0t t  . In the former figure 

input concentration 0( / )C C  is 1.0 i.e. in the presence of solute 

particles, while in the latter figure, it is zero since solute particles 

are absent. So the input remains uniform in both the time 

domains. 

 

Figure 1a. Concentration values obtained from solution (28), i.e., for 

uniform pulse type input in the time domain 0t t  in a finite domain of 

length 1.0(km)L  . Curves are drawn for  ( ) exp( )f mt mt  , where 

10.1(yr)m   and 0 1.2(yr)t  . 



This journal is © Advanced Technology & Science 2013 IJAMEC, 2014, 2(4), 19–25  |  23 

 

Figure 1b. Concentration values obtained from solution (28), i.e., for 

uniform pulse type input in the time domain 0t t  in a finite domain of 

length 1.0(km)L  . Curves are drawn for ( ) exp( )f mt mt  , where 

10.1(yr)m   and 
0 1.2(yr)t  . 

Similarly figures (2a,b) represent the solution (37), for 

( ) exp( )f mt mt  . It is evident from the figures that the solution 

(37) represents that the input concentration increases in the time 

domain 0t t  i.e. in the presence of solute particles and it 

decreases in the time domain 0t t since solute particles are 

absent and decreases to zero. 

 

Figure 2a. Concentration values obtained from solution (37), i.e., for 

varying pulse type input in the time domain 0t t  in a finite domain of 

length 1.0(km)L  . Curves are drawn for ( ) exp( )f mt mt  , where 

10.1(yr)m   and 0 1.2(yr)t  . 

 

 

 

Figure 2b. Concentration values obtained from solution (37), i.e., for 

varying pulse type input in the time domain 0t t  in a finite domain of 

length 1.0(km)L  . Curves are drawn for  ( ) exp( )f mt mt  , where 
10.1(yr)m   and 

0 1.2(yr)t  . 

Figure (3) compares the concentration distribution  behaviour in 

finite and semi-infinite domains. The input conditions for the 

both the domains are of uniform pulse type. It means the input 

concentration, 0( / )C C  is 1.0 i.e. in the presence of solute 

particles ( 0t t )and is zero i.e. in the absence of solute particles (

0t t )where 0 1.8t  (yr) is considered. The curves are drawn for 

exponentially decreasing function, ( ) exp( )f mt mt  .  

The dotted curves represent the concentration values in the finite 

domain evaluated from solution (28), while solid curves represent 

those in the semi-infinite domain obtained when the initial solute 

concentration is assumed exponentially decreasing function of 

space variable which tends to zero at infinity i.e., 

( , ) exp( )iC x t C x  for 0x  at 0t  . 

Thus the desired analytical solution for temporally dependent 

dispersion along uniform flow in semi-infinite domain for 

uniform pulse type input concentration is Jaiswal et al. [ 22] 
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  2

3 0 0( , ) exp / ( )n i nF x T C D u T x f mt         (42) 

and nT  may be written in terms of t  using the transformation  

(10) for an expression ( )f mt . 
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Figure 3. Comparison of concentration values of uniform pulse type, in 

semi-infinite and finite domains for ( ) exp( )f mt mt   at 1.0t  (yr) 

when 0t t  and at 2.5t  (yr) when 0t t , respectively, where 0 1.8t 

(yr). The solid curves represent the concentration values in the semi-

infinite domain (39), while dotted curves represent those in the finite 

domain (28), for 
0 0.25u  (km/yr), 

0 0.14D   (km2/yr). 

The comparison are done for   
1

0.01 km


  at 1.0t  (yr) 

when 0t t  and 2.5t  (yr) when 0t t . It may be observed that, 

a position away from the source gets less polluted in a semi-

infinite domain than that in a finite domain, in the presence of 

source. After its elimination, the rehabilitation of finite domain 

will be slower than that of a semi-infinite domain. 

 Analytical solutions of temporally dependent diffusion along 

uniform flow are useful for understanding the transient response 

of soil and groundwater pollution. However, water level usually 

varies arbitrarily in time. Even though, this solution may still 

provide us with valuable insight in the transient response of 

aquifer to such seasonal forcing fluctuations. The transformation 

(6) may be used for space-time dependent advection-diffusion 

equation where functions are considered in degenerate form, with 

an assumption ( ) 1f mt  , for 0m   or 0t   to. 

5. Conclusion 

Analytical solutions of one-dimensional advection-diffusion 

equation are obtained in a finite domain for two sets of boundary 

conditions. In the both set, initial condition is non-homogeneous. 

The input condition is pulse type. The second boundary condition 

in each set is flux type  of homogeneous nature . Laplace 

transformation technique is utilized in order to attain the 

analytical solutions. From figures (1,2), distribution of solute 

constration shows the respective boundary conditions. The pulse 

type input boundary condition helps predicting the rehabilitation 

process of a degraded system once the source of the solute 

contamination is eliminated for ever. Such analytical solutions 

may serve as tools in validating numerical solutions in more 

realistic dispersion problems. These solutions are facilitating to 

assess the transport of pollutants solute concentration away from 

its source along a flow through soil medium, aquifers, and oil 

reservoirs etc. which has always been difficult because of the 

inherent complexities. 
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